Theory of Complex Variable Functions I - NMAA016
Title: Teorie funkcí komplexní proměnné I
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022
Semester: summer
E-Credits: 6
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Classification: Mathematics > Real and Complex Analysis
Interchangeability : NMMA338
Is incompatible with: NMMA338
Is interchangeable with: NMMA338
Opinion survey results   Examination dates   Schedule   Noticeboard   
Annotation -
Advanced Complex Analysis, Part I (the continuation of the fundamental course MAA021). Constructive theory of functions, harmonic functions in two variables, spaces of holomorphic function. Conformal mapping.
Last update: T_KMA (22.05.2001)
Aim of the course -

Advanced topics in complex analysis.

Last update: LAVICKA/MFF.CUNI.CZ (29.05.2008)
Literature - Czech

Rudin, W.: Reálná a komplexní analýza, Academia Praha, 1977

Novák, B.: Funkce komplexní proměnné (skripta), SPN Praha, 1980

Luecking, D.H., Rubel, L.A.: Complex Analysis, A Functional Analysis Approach, Springer-Verlag, Universitext, 1984

Veselý, J.: Komplexní analýza, Karolinum Praha, 2000

Last update: T_KMA (22.05.2003)
Teaching methods -

Lecture and exercises

Last update: LAVICKA/MFF.CUNI.CZ (29.05.2008)
Syllabus -

Holomorphic and meromorphic functions, Weierstrass and Mittag- Leffler theorems. Conformal mapping, Riemann theorem, boundary properties of conformal mappings. Spaces H(G) and its dual spaces. Applications of Hahn-Banach theorem: Cauchy theorem, Runge theorem and its applications.

Last update: G_M (04.05.2010)