SubjectsSubjects(version: 970)
Course, academic year 2024/2025
   Login via CAS
Algoritmy strojového učení a jejich použití ve fyzice vysokých energií - NJSF162
Title: Algoritmy strojového učení a jejich použití ve fyzice vysokých energií
Guaranteed by: Institute of Particle and Nuclear Physics (32-UCJF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/1, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: Mgr. Tomáš Sýkora, Ph.D.
Teacher(s): Mgr. Tomáš Sýkora, Ph.D.
Annotation -
• sparse kernel machines (SVM, RVM) • graphical models • mixture models and expectation maximization • principal component analysis (PCA) • Markov models and linear dynamical systems • Hopfield map • recurrent neural network
Last update: Krtička Milan, doc. Mgr., Ph.D. (13.02.2023)
Literature -

books

[1] Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag Berlin, Heidelberg, ISBN:0-387-31073-8

[2] Kevin Gurney, An introduction to neural networks, UCL Press, ISBN: 1-85728-673-1

[3] Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification (2nd Edition), Wiley-Interscience New York, NY, USA, ISBN:0471056693

[4] Tom M. Mitchell, Machine Learning, McGraw-Hill, ISBN: 070428077

[5] S. Theodoridis K. Koutroumbas, Pattern Recognition, Elsevier, ISBN:9781597492720

[6] Stuart J. Russell and Peter Norvig, Artificial Intelligence A Modern Approach, Prentice Hall Press Upper Saddle, River, NJ, USA, ISBN:0136042597 9780136042594

online books:

[1] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, www.deeplearningbook.org

[2] Michael Nielsen, Neural Networks and Deep Learning, http://neuralnetworksanddeeplearning.com/index.html

other links:

https://en.wikipedia.org/wiki/Machine_learning

https://www.pyimagesearch.com/2018/03/05/7-best-deep-learning-books-reading-right-now/

https://www.goodreads.com/search?q=deep+learning

Last update: Krtička Milan, doc. Mgr., Ph.D. (13.02.2023)
Syllabus -

sparse kernel machines (SVM, RVM)

graphical models

mixture models and expectation maximization

principal component analysis (PCA)

Markov models and linear dynamical systems

Hopfield map

recurrent neural network

Last update: Krtička Milan, doc. Mgr., Ph.D. (13.02.2023)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html