SubjectsSubjects(version: 957)
Course, academic year 2023/2024
   Login via CAS
Quantum Field Theory I - NJSF145
Title: Kvantová teorie pole I
Guaranteed by: Institute of Particle and Nuclear Physics (32-UCJF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023 to 2023
Semester: winter
E-Credits: 9
Hours per week, examination: winter s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Guarantor: RNDr. Jiří Novotný, CSc.
Classification: Physics > Nuclear and Subnuclear Physics
Incompatibility : NJSF068
Interchangeability : NJSF068
Is incompatible with: NJSF068
Is interchangeable with: NJSF068
Annotation -
Introduction to relativistic quantum field theory. Particles, fields, interactions, canonical quantization, scattering theory and Feynman graphs.
Last update: T_UTF (29.04.2016)
Course completion requirements - Czech

Podmínkou pro vykonání zkoušky je udělení zápočtu. Zápočet je udělen po získání patřičného počtu bodů jednak za odevzdané domácí úkoly a za zápočtovou písemnou práci.

Last update: Zdráhal Martin, Mgr., Ph.D. (25.09.2020)
Literature -

Itzykson C., Zuber J.-B., Quantum field theory, McGraw-Hill, New York 1980.

Das, A., Lectures on quantum field theory, World Scientific, Singapore 2008.

Last update: T_UCJF (10.04.2015)
Teaching methods - Czech

Kvůli aktuální epidemiologické situaci je tento předmět vyučován distančně s využitím platformy ZOOM.

přednáška: úterý 14:50

https://cesnet.zoom.us/j/97109167008?pwd=Sy9XQkdoaTdSVGs1RDh5YVdicmRWZz09

přednáška: čtvrtek 9:00

https://cesnet.zoom.us/j/93791700757?pwd=KzZlTGlYZmtYZUZJNlZqRDV1V20xUT09

cvičení: čtvrtek 10:40

https://cesnet.zoom.us/my/mzdrahal

Last update: Zdráhal Martin, Mgr., Ph.D. (25.09.2020)
Requirements to the exam - Czech

Zkouška má písemnou a ústní část. Písemná část sestává ze dvou úloh a úspěšné složení písemné části je nutnou podmínkou k pokračování ústní částí zkoušky.

Požadavky ke zkoušce odpovídají odpřednášené části sylabu doplněné o části zadané k samostatnému nastudování. Při opakování zkoušky se opakuje písemná i ústní část.

Last update: Novotný Jiří, RNDr., CSc. (13.10.2017)
Syllabus -

Relativistic quantum mechanics: Klein - Gordon equation. Continuity equation and probability density. Dirac equation. Continuity equation. Spin and total angular momentum. Non-relativistic limit and Pauli equation. Spin magnetic moment of electron. Covariant form of Dirac equation. Algebra of Dirac gamma matrices. Equivalence of representations. Standard representation. Trace identities. Invariance of Dirac equation under proper Lorentz transformations. Spinor representations of Lorentz group. Space inversion. Covariant bilinear forms. Solutions of Dirac equation for free particle. States with positive and negative energy. Bispinor plane-wave amplitudes u and v. Charge conjugation. Time reversal. Spin states. Spin four-vector. Helicity. Projection operators for energy and spin. Gordon decomposition. Massless particles. Chirality. Weyl equation and its invariance properties: proper Lorentz transformations, P, C, CP. Dirac equation for particle in external spherically symetric field. Stationary states. Commuting observables. Spinor harmonics (spherical spinors). Separation of angular and radial variables. Solution of radial equations in the case of Coulomb potential. Energy spectrum of hydrogen-like atom. Degree of degeneracy and fine structure of energy levels. Difficulties of one-particle interpretation of Dirac equation. Proca equation. Plane waves and properties of polarization vectors. Lagrange formalism for relativistic classical fields: Variational (stationary action) principle and Euler - Lagrange equations. Lagrangian density for Klein - Gordon, Dirac, Maxwell and Proca (massive vector) fields. Symmetries and conservation laws. Noether's theorem. Consequences of invariance under Poincaré group: energy-momentum tensor, angular momentum. Internal symmetry. Invariance under phase transformations and conservation of vector current (charge). Local gauge transformations. Quantizatrion of free fields and particle interpretation: Real and complex Klein - Gordon field. Canonical quantization and commutation relations for creation and annihilation operators. Energy, momentum and charge of the quantized field. Fock space. Vacuum and normal ordering. Dirac field. Positivity of energy and anticommutation relations. Bosons and fermions - spin and statistics. Antiparticles. Quantization of massive vector (Proca) field. Relativistic covariance of canonical quantization. Interactions of quantized fields: Examples - Yukawa interaction, interaction of fermions with vector field (electrodynamics), direct four-fermion interaction. Interaction (Dirac) representation in description of time evolution. Dyson perturbation expansion of evolution operator. Chronological product (time-ordering). S-matrix. Relativistically invariant transition amplitude. Decay probability per unit time (decay rate). Cross section of a two-particle collision. Kinematics of binary processes: Mandelstam variables s, t, u. Examples of some processes in the first order of perturbation expansion - decay of scalar and vector boson into a fermion-antifermion pair. Neutrino - electron scattering. Representation of the corresponding transition amplitudes by means of Feynman diagrams.

Last update: T_UCJF (10.04.2015)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html