SubjectsSubjects(version: 920)
Course, academic year 2022/2023
   Login via CAS
Nuclear Physics - NJSF064
Title: Fyzika atomového jádra
Guaranteed by: Institute of Particle and Nuclear Physics (32-UCJF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020
Semester: winter
E-Credits: 7
Hours per week, examination: winter s.:3/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: prof. RNDr. Pavel Cejnar, Dr., DSc.
Mgr. Pavel Stránský, Ph.D.
Mgr. František Knapp, Ph.D.
Classification: Physics > Nuclear and Subnuclear Physics
Is pre-requisite for: NJSF058, NJSF116
Annotation -
Last update: T_UCJF (12.05.2011)
The basic characteristics of the atomic nucleus. Nuclear forces. The transmutations of atomic nuclei. Nuclear reactions. Nuclear models.
Course completion requirements - Czech
Last update: Mgr. František Knapp, Ph.D. (10.06.2019)

Podmínkou pro zakončení předmětu a udělení zápočtu je vypracování domácích úkolů zadávaných průběžně během semestru.

Zápočet je nutnou podmínkou účasti u zkoušky. Zkouška je ústní.

Literature -
Last update: doc. Mgr. Milan Krtička, Ph.D. (30.04.2019)

V. Zelevinsky, A. Volya: Physics of Atomic Nuclei (Willey, 2017)

K.L.G. Heyde: Basic Ideas and Concepts in Nuclear Physics (Taylor & Francis 2004)

C.A. Bertulani : Nuclear Physics in a Nutshell (Princeton Univ. Press 2007)

R.F. Casten: Nuclear Structure from a Simple Perspective (Oxford Univ. Press 2000

J.-L. Basdevant, J. Rich, M. Spiro: Fundamentals in Nuclear Physics (Springer 2005)

P.E. Hodgson, E. Gadioli, E. Gadioli Erba: Introductory Nuclear Physics (Clarendon Press 1997)

T. Mayer-Kuckuk: Fyzika atomového jádra (SNTL 1979)

Requirements to the exam - Czech
Last update: Mgr. František Knapp, Ph.D. (09.10.2017)

Zkouška je prováděna ústní formou. Požadavky odpovídají sylabu předmětu v rozsahu uvedeném v SIS.

Syllabus -
Last update: doc. Mgr. Milan Krtička, Ph.D. (30.04.2019)

1. Nuclear observables

  • Map of nuclides: decay half-times of nuclei in the NxZ plane, stability line, superheavy elements
  • Binding energies: nuclear masses, odd-even effects, p/2p and n/2n separation energies, magic numbers
  • Properties of ground-states: spin, parity, static magnetic and electric moments, distribution of mass and charge
  • Basic decay modes: α, β−, β+, electron capture (phenomenology), radioactive decay chains
  • Low-lying excitations: typical spectra of even and odd nuclei, vibrational and rotational bands, yrast states and moments of inertia
  • Electromagnetic transitions: transition types and multipolarities, selection rules, lifetimes, isomeric states

2. Nuclear models

  • Nucleus as a droplet: binding-energy formula, collective excitations (typical spectra, anharmonic effects, backbending), Bohr collective Hamiltonian
  • Nucleus as the Fermi gas: shell corrections to the binding energy, single-particle quantum numbers, spin-orbital interaction, particle-hole excitations in light nuclei, Nilsson model and the onset of deformation, occurrence of deformed nuclei on the map of nuclides
  • Components of a microscopic theory of nuclei: creation of the mean field, residual interactions of the short- and long-range type, pairing (superfluidity)

3. Nuclear interactions

  • Basic data on the NN interactions: nucleon-nucleon scattering, analysis of deuteron
  • Elementary description of NN interactions: charge independence, isospin, phenomenological potentials, bare interactions, interactions in nuclear medium
  • Microscopic considerations: meson exchanges, finite range of interactions, attracting forces vs. repulsive core, how this may work on the level of quarks and gluons

4. Nuclear processes

  • Alpha decay: transition through the Coulomb barrier, lifetime-energy correlation
  • Beta decay: three-body decay, properties of neutrino, shapes of electron spectra, exotic beta-decay types
  • Exotic types of radioactivity: emissions of nucleons or heavier-nuclei
  • Fission: fissibility of nuclei, drop-model description, mass distribution of fission fragments
  • Direct reactions: examples, time scales, role of single-particle states
  • Compound-nucleus reactions: neutron resonances, other compound-nucleus processes, Breit-Wigner formula, density of nuclear states at high energies, decays of the compound nucleus (particle evaporation, electromagnetic transitions, giant resonances)
  • Heavy-ion collisions: hadron matter, quark-gluon plasma
  • Nuclear astrophysics: nuclear fusion in stars, nucleosynthesis in early universe and in supernovae

Charles University | Information system of Charles University |