SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
Quantum Field Theory at Finite Temperature - NJSF030
Title in English: Kvantová teorie pole při konečné teplotě
Guaranteed by: Institute of Particle and Nuclear Physics (32-UCJF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2007
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Jiří Dolejší, CSc.
Classification: Physics > Nuclear and Subnuclear Physics
Annotation -
Last update: T_UCJF (21.05.2001)
The parallels between the statistical physics and the quantum field theory. The technique of the functional integral. The perturbative expansion of partition function, diagrammatics. Applications to specific problems according to interests of students: e.g. QCD, kvark-gluon plasma.
Course completion requirements - Czech
Last update: doc. Mgr. Milan Krtička, Ph.D. (10.06.2019)

Složení ústní zkoušky.

Literature -
Last update: T_UCJF (19.03.2015)

Kapusta: Finite Temperature Field Theory. Cambridge Univ. Press 1989

Parisi: Statistical Field Theory. Addison-Wesley 1988

Negele, H. Orland: Quantum Many-Particle Systems. Addison-Wesley 1988

Fetter, J. D. Walecka: Quantum Theory of Many-Particle Systems. McGraw-Hill 1971

Requirements to the exam - Czech
Last update: doc. RNDr. Jiří Dolejší, CSc. (11.10.2017)

Zkouška je ústní, může zahrnovat i prezentaci řešení zadaného problému či úlohy.

Syllabus -
Last update: T_UCJF (26.05.2003)

The partition function of a quantum system expressed in terms of the functional integral, Bosons and fermions. The relations to the "standard" field theory (at zero temperature), real and imaginary time.

The perturbation expansion of the partition function, the diagrammatic representation. Renormalization, the renormalization group.

Some applications, e.g. the photon gas (QED), spontaneous breakdown and restoration of symmetries in gauge theories, the Higgs model.

Further applications according to interests of students.

References Kapusta: Finite Temperature Field Theory. Cambridge Univ. Press 1989

Parisi: Statistical Field Theory. Addison-Wesley 1988

Negele, H. Orland: Quantum Many-Particle Systems. Addison-Wesley 1988

Fetter, J. D. Walecka: Quantum Theory of Many-Particle Systems. McGraw-Hill 1971

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html