SubjectsSubjects(version: 970)
Course, academic year 2024/2025
   Login via CAS
Introduction to Quantum Field Theory - NJSF014
Title: Úvod do kvantové teorie pole
Guaranteed by: Institute of Particle and Nuclear Physics (32-UCJF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:3/1, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Guarantor: prof. RNDr. Jan Kvasil, DrSc.
doc. RNDr. Jiří Dolejší, CSc.
Classification: Physics > Nuclear and Subnuclear Physics
Pre-requisite : NOFY045
Annotation -
One-particle relativistic wave equations. Lagrangians of classical fields. Canonical quantization. S-matrix. Quantum electrodynamics. Quantum theory of radiation, amplitudes of binary processes, Feynman diagrams. Renormalization.
Last update: T_UCJF (21.05.2001)
Course completion requirements - Czech

K získání zápočtu je vyžadováno úspěšné vyřešení zápočtové písemky. Zápočet lze opakovat.

Zápočet je podmínkou zápisu ke zkoušce.

Zkouška je ústní, může zahrnovat i prezentaci řešení zadaného problému či úlohy.

Last update: Dolejší Jiří, doc. RNDr., CSc. (12.10.2017)
Literature - Czech

Mandl, G. Shaw: Quantum Field Theory, J. Wiley & Sons, N.Y. 1988. Itzykson, J.-B. Zuber: Quantum Field Theory. McGraw-Hill 1980, Mir Moskva 1984

J. D. Bjorken, S. D. Drell: Relativistic Quantum Mechanics, Relativistic Quantum Fields. McGraw-Hill 1964, 1965, Nauka Moskva 1978

N. N. Boguljubov, D. V. Širkov: Vvedenije v teoriju kvantovannych polej. Nauka Moskva 1984

S. S. Schweber: An Introduction to Relativistic Quantum Field Theory. Row, Peterson 1961, IIL Moskva 1963

F. Mandl, G. Shaw: Quantum Field Theory. Wiley 1995

L. H. Ryder: Quantum Field Theory. Cambridge Univ. Press 1994

S. Weinberg: The Quantum Theory of Fields, Cambridge Univ. Press 1995

L. S. Schulman: Techniques and Applications of Path Integration. Wiley 1981

A. I. Achiezer, V. B. Beresteckij: Kvantovaja elektrodinamika. Nauka Moskva 1981

Last update: Zakouřil Pavel, RNDr., Ph.D. (05.08.2002)
Syllabus -

Classical fields. Lagrangians of free (scalar, vector, electromagnetic, spinor) fields. The action principle, equations of motion. Conservation laws. Symmetries of interaction Lagrangians. Interaction Lagrangian for interacting spinor and electromagnetic fields. Gauge invariance.

Quantization of free fields. Canonical quantization. Particularities in quantization of electromagnetic field. The Pauli theorem. The CPT theorem. Covariant commutators (anticommutators) of field operators. Integral representation of propagators of free fields. Quantization of interacting fields. Dirac picture. Time dependence of field operators and of state vectors. The evolution operator. Integral equation for this operator, its iterative (perturbation) solution. S matrix.

The S matrix of QED. Wick's theorems. Perturbation expansion of matrix elements of S matrix. Graphical representation of scattering amplitudes in terms of Feynman diagrams. Feynman rules in configuration and in momentum space. Amplitudes of basic QED processes in lowest orders (Moeller scattering, Bhabha scattering, Compton scattering, pair annihilation).

Literature:

C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill 1980 F. Mandl, G. Shaw, Quantum Field Theory, Wiley 1995 L.H. Ryder, Quantum Field Theory, Cambridge University Press 1994 S. Weinberg, The Quantum Theory of Fields I, Cambridge University Press 1995

Last update: T_UCJF (19.05.2003)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html