SubjectsSubjects(version: 941)
Course, academic year 2022/2023
   Login via CAS
Continuum Mechanics - NGEO078
Title: Mechanika kontinua
Guaranteed by: Department of Geophysics (32-KG)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: summer
E-Credits: 4
Hours per week, examination: summer s.:2/1, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Ondřej Čadek, CSc.
Incompatibility : NGEO111
Interchangeability : NGEO111
Is incompatible with: NGEO111
Is interchangeable with: NGEO111
Annotation -
Last update: T_KG (09.05.2013)
Continuum mechanics is a theoretical ground for solving many problems of basic and applied research. The lecture provides the basics of the continuum mechanics theory and describes practical applications of its use.
Aim of the course -
Last update: T_KG (09.05.2013)

The lecture provides the basics in continuum mechanics and describes its use in basic and applied research.

Course completion requirements - Czech
Last update: prof. RNDr. Ondřej Čadek, CSc. (06.10.2017)

Zápočet: Včasné vypracování šesti domácích úkolů a získání alespoň 50% bodů z písemky, která se píše po odpřednášení částí 1-8.

Zkouška probíhá ústní formou. V případě, že zápočtová písemka je hodnocena známkou 1, je studen/ka zkoušen/a především z částí 9-11.

Literature - Czech
Last update: prof. RNDr. Ondřej Čadek, CSc. (06.10.2017)

Studenti před každou přednáškou dostanou vytištěné shrnutí přednášky v rozsahu cca 10 až 15 stran, do kterého si mohou vpisovat svoje poznámky. Většina učiva je přehledně shrnuta v elektronickém, anglicky psaném skriptu Z. Martince Continuum mechanics (http://geo.mff.cuni.cz/studium/Martinec-ContinuumMechanics.pdf).

Teaching methods -
Last update: T_KG (11.04.2008)

Lecture + exercises

Syllabus -
Last update: prof. RNDr. Ondřej Čadek, CSc. (07.01.2019)

1. Geometry of deformation, Eulerian and Lagrangian frames, displacement, strain tensor.

2. Material and spatial time derivative. Reynolds transport theorem.

3. Body and surface forces. Stress tensor.

4. Conservation laws in global and local scale, continuity and momentum equations.

5. Constitutive relationships. Elastic, viscous and plastic deformation.

6. Law of energy conservation. Entropy. Dissipation of mechanical energy. Thermal convection.

7. Mathematically correct formulation of continuum mechanics problems. Boundary conditions.

8. Pre-stressed media, thermal stresses, phase transitions.

9. Thin shell approximation of basic equations, membranes, shallow water approximation.

10. Applications: flow of oceans and atmosphere, sub-solidus flow of rocks and ices, viscoelastic liquids etc.

11. Numerical methods to solve the continuum mechanics problems.

12. Unsolved questions and open problems in continuum mechanics theory.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html