SubjectsSubjects(version: 850)
Course, academic year 2019/2020
   Login via CAS
Thermodynamics of Condensed Matter - NFPL800
Title in English: Termodynamika kondenzovaných soustav
Guaranteed by: Department of Physics of Materials (32-KFM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2019 to 2019
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/1 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: prof. RNDr. Petr Chvosta, CSc.
doc. RNDr. Miroslav Cieslar, CSc.
RNDr. František Slanina, CSc.
Annotation -
Last update: doc. RNDr. Josef Pešička, CSc. (31.03.2015)
The course is taught in two parallel classes by specialty. 1. Equilibrium thermodynamics. 2. Non-equilibrium thermodynamics, general description. 3. Equilibrium statistical physics. Systems of non-interacting and interacting particles. 4. Non-equilibrium statistical physics. 5. Phase equilibrium, stability conditions. 6. Thermodynamics of mixed phases. 7. Phase diagrams (binary, ternary). 8. Statistical models using interactions of nearest neighbors. Short and long range ordering.
Course completion requirements -
Last update: prof. RNDr. Vladimír Šíma, CSc. (10.06.2019)

The condition for completion of the course is obtaining credit and passing an oral exam.

Literature - Czech
Last update: doc. RNDr. Josef Pešička, CSc. (25.04.2014)

van Kampen, N. G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam, (1992).

Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer, Berlin (1991).

Risken, H.: The Fokker-Planck Equation, Springer, Berlin (1989).

Sprušil, B.: Termodynamika pevných látek, skripta UK Praha 1982, II. vydání.

Haasen, P.: Physical Metallurgy, Cambridge University Press 2nd Edition 1986.

Hillert, M.: Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge University Press 1998.

Porter, D. A., Easterling, K. E.: Phase Transformations in Metals and Alloys, CRC Press, 2nd Edition 2001.

Teaching methods -
Last update: prof. RNDr. Vladimír Šíma, CSc. (10.06.2019)

lecture + exercise

Requirements to the exam -
Last update: prof. RNDr. Vladimír Šíma, CSc. (10.06.2019)
  • the condition for the examination is obtaining credit

  • the condition for obtaining the credit is active participation in the lessons and successful completion of the tests

  • the exam is oral one, the extent of the required knowledge corresponds to the syllabus of the lecture in the extent presented at the lecture
Syllabus -
Last update: prof. RNDr. Vladimír Šíma, CSc. (30.03.2015)

1. Equilibrium thermodynamics: local forms of conservation laws and thermodynamical relations. Constitutive relations. Landau theory of phase transitions, critical phenomena. Negative absolute temperatures.

2. Non-equilibrium thermodynamics: general description of non-equilibrium processes, principle of minimal entropy production, variational principles. Onsager theory of kinetic coefficients. Spatial and temporal dissipative structures.

3. Equilibrium statistical physics: broadening of Gibbs method (T---p ensable). Systems of non-interacting quantum particles (fermions, bosons, advanced applications). Interacting particles (classical and quantum gases, Ising model). Theory of fluctuations. Scaling theory, universality, renormalization. Mean field theory, disordered systems.

4. Non-equlibrium statistical physics: Liouville equation for classical and quantum systems. Boltzmann kinetic equation. Linear response theory, fluctuation-dissipation theorem. Mesoscopic description and stochastic methods.

5., 6. Phase equilibrium, stability conditions in the multicomponent system. Thermodynamics of solutions. Free enthalpy. Chemical potential. Common-tangent construction. Gibbs-Duhem relation. Partial quantities. Activity. Ideal, regular and real solid solutions. Quantities of mixing.

7. Binary phase diagrams. Total solubility. Limited solubility, eutectic diagram, peritectic diagram. Short-range order. Long-range order. Intermedial phases. Ternary phase diagrams. Solidification of alloys, purification of materials, segregation processes. Transformations in solid state: diffusional and non-diffusional.

8. Statistical models using interactions of nearest neighbors (for regular solid solutions, for short range order and long range order, configurational free energy of compounds).

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html