|
|
|
||
The course requires a basic knowledge of quantum mechanics. It introduces the basic concepts of quantum
information theory with stress put on the idea of entanglement, methods of its quantification, and demonstration of
its usefulness via fundamental quantum computation algorithms.
Last update: Mikšová Kateřina, Mgr. (04.05.2023)
|
|
||
Conditions for accomplishing this subject are: For “Z” at least 60% presence at the exercises and successful passing of a written test. For “Zk” successful passing of an oral exam. Last update: Mikšová Kateřina, Mgr. (04.05.2023)
|
|
||
[1] „Quantum computation and quantum information”, M. A. Nielsen & I. L. Chuang [2] ,,Modern quantum mechanics'', J. J. Sakurai [3] „Quantum-Information-Theory”, lecture notes, M. Lewenstein [4] „Lecture Notes for Physics”, lecture notes, J. Preskill
Last update: Mikšová Kateřina, Mgr. (04.05.2023)
|
|
||
The exam requirements correspond to the syllabus in the extent addressed during the lecture course (usually Chapters 1.1-1.4, 2.4-2.6, and 12.5 of the book by M. A. Nielsen & I. L. Chuang). Last update: Mikšová Kateřina, Mgr. (04.05.2023)
|
|
||
1. Quantum bits. Single and multiple qubit gates. Measurements. (2h) 2. Entanglement. Quantification for pure states. Schmidt decomposition. Bell states. (4h) 3. Quantum teleportation. (3h) 4. Deutsch’s algorithm. (1h) 5. Bell inequalities. (2h) 6. Universal set of quantum gates. (2h) 7. Mixed state entanglement. Entanglement measures. (2h) 8. Entanglement of formation. Pure state decompositions of mixed states. (4h) 9. Teleportation on a decohered Bell state. (2h) 10. Negativity. Bound entanglement. (2h) 11. Quantum discord. (2h) Last update: Mikšová Kateřina, Mgr. (04.05.2023)
|