SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Introduction to quantum information theory - NFPL241
Title: Introduction to quantum information theory
Guaranteed by: Department of Condensed Matter Physics (32-KFKL)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English
Teaching methods: full-time
Guarantor: doc. RNDr. Tomáš Novotný, Ph.D.
Ing. Katarzyna Roszak, Ph.D.
Teacher(s): Ing. Katarzyna Roszak, Ph.D.
Annotation -
The course requires a basic knowledge of quantum mechanics. It introduces the basic concepts of quantum information theory with stress put on the idea of entanglement, methods of its quantification, and demonstration of its usefulness via fundamental quantum computation algorithms.
Last update: Mikšová Kateřina, Mgr. (04.05.2023)
Course completion requirements -

Conditions for accomplishing this subject are:

For “Z” at least 60% presence at the exercises and successful passing of a written test.

For “Zk” successful passing of an oral exam.

Last update: Mikšová Kateřina, Mgr. (04.05.2023)
Literature -

[1] „Quantum computation and quantum information”, M. A. Nielsen & I. L. Chuang

[2] ,,Modern quantum mechanics'', J. J. Sakurai

[3] „Quantum-Information-Theory”, lecture notes, M. Lewenstein

[4] „Lecture Notes for Physics”, lecture notes, J. Preskill

Last update: Mikšová Kateřina, Mgr. (04.05.2023)
Requirements to the exam -

The exam requirements correspond to the syllabus in the extent addressed during the lecture course (usually Chapters 1.1-1.4, 2.4-2.6, and 12.5 of the book by M. A. Nielsen & I. L. Chuang).

Last update: Mikšová Kateřina, Mgr. (04.05.2023)
Syllabus -

1. Quantum bits. Single and multiple qubit gates. Measurements. (2h)

2. Entanglement. Quantification for pure states. Schmidt decomposition. Bell states. (4h)

3. Quantum teleportation. (3h)

4. Deutsch’s algorithm. (1h)

5. Bell inequalities. (2h)

6. Universal set of quantum gates. (2h)

7. Mixed state entanglement. Entanglement measures. (2h)

8. Entanglement of formation. Pure state decompositions of mixed states. (4h)

9. Teleportation on a decohered Bell state. (2h)

10. Negativity. Bound entanglement. (2h)

11. Quantum discord. (2h)

Last update: Mikšová Kateřina, Mgr. (04.05.2023)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html