SubjectsSubjects(version: 970)
Course, academic year 2024/2025
   Login via CAS
Nuclear Methods in Solid State Physics - NFPL190
Title: Jaderné metody ve fyzice pevných látek
Guaranteed by: Department of Low Temperature Physics (32-KFNT)
Faculty: Faculty of Mathematics and Physics
Actual: from 2017
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. Mgr. Jaroslav Kohout, Dr.
prof. Mgr. Jakub Čížek, Ph.D.
Teacher(s): prof. Mgr. Jakub Čížek, Ph.D.
doc. Mgr. Jaroslav Kohout, Dr.
Annotation -
Principles of modern methods of microstructural investigations of condensed matter based on use of subatomic particles as probes or on utilisation of nulear experimental techniques are presented: Mössbauer spectroscopy, nuclear orientation, perturbed angular correlations, muon spin rotation, neutron scattering, positron annihilation spectroscopy, ion beam analysis, nuclear magnetic resonance. For PhD studies.
Last update: T_KFNT (23.05.2003)
Course completion requirements -

oral exam

Last update: Čížek Jakub, prof. Mgr., Ph.D. (10.06.2019)
Literature -

G. Schatz, A. Weidinger, Nuclear Condensed Matter Physics: Nuclear Methods and Applications. Wiley & Sons, Inc., (2002)

D. A. SHirley, H. Haas, Annu Rev. Phys. Chem. 23, 385 (1972)

J. N. Mundy, S. J. Rothman, M. J. Fluss, and L. C. Smedskjaer, Solid State: Nuclear Methods, Academic Press Inc., Orlando (1983)

Last update: Čížek Jakub, prof. Mgr., Ph.D. (10.06.2019)
Teaching methods -

lecture

Last update: Čížek Jakub, prof. Mgr., Ph.D. (10.06.2019)
Requirements to the exam -

Oral exam contains questions covering topics presented in lectures during semester.

Last update: Čížek Jakub, prof. Mgr., Ph.D. (10.06.2019)
Syllabus -
1. Selected topics of nuclear physics.
2. Mössbauer spectroscopy.
3. Nuclear orientation in condensed matter physics.
4. Perturbed angular correlations.
5. Muon spin rotation.
6. Netron scattering.
7. Positron annihilation spectroscopy.
8. Ionbeams in condensed matter physics.
9. Nuclear magnetic resonance.

Last update: T_KFNT (23.05.2003)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html