SubjectsSubjects(version: 957)
Course, academic year 2023/2024
   Login via CAS
Solid State Physics I - NFPL143
Title: Fyzika pevných látek I
Guaranteed by: Department of Condensed Matter Physics (32-KFKL)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020
Semester: winter
E-Credits: 9
Hours per week, examination: winter s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. RNDr. Martin Diviš, CSc.
doc. RNDr. Karel Carva, Ph.D.
Annotation -
Conduction electrons in materials (classical and quantum description), electrons in periodic potential. Electronic structure of metals, semiconductors and insulators. Transport and thermal properties, optical and magnetic properties of materials. Examples of real materials.
Last update: T_KFES (23.05.2003)
Descriptors - Czech

Cvičení online: https://cesnet.zoom.us/meeting/tJckd--qrD0iG9FcCXhg2PNt-8-PR5qkt0XB/ics?icsToken=98tyKuCrpzssGNaTuBiCRowqHYigM-rzpiFHjfp7nzzdCycBUi3ie7oPAoAqAdPE

Last update: Carva Karel, doc. RNDr., Ph.D. (02.10.2020)
Course completion requirements -

Request to finish the course is the successfull passing of oral examination.

Last update: Mikšová Kateřina, Mgr. (12.05.2022)
Literature -

[1] David Jiles, Introduction to the Electronic Properties of Materials

[2] Rolf E. Hummel, Electronic Properties of Materials

[3] N.W.Ashcroft, N.D.Mermin, Solid State Physics, Sounders Coll. Publishing 1988

[4] R.E. Pierls, Quantum Theory of Solids, Oxford University Press 2001

[5] Springer Handbook of Condensed Matter and Materials Data, W. Martienssen and H. Warlimont, eds., Springer 2005

Last update: Diviš Martin, doc. RNDr., CSc. (13.05.2019)
Syllabus -
FPL143 Electron gas in solids. Results of Drude-Lorentz theory.

Bloch theorem. Bloch functions. Reciprocal space. Brillouin zone. Reduced, extended, periodic scheme. k-p method.

Effective mass approximation (Quasiparticles). Wannier theorem. Wannier functions. Density of states & resolvent (Green function). Kronig-Penney model.

Nearly free electron approach (NFE). Linear Combination of Atomic Orbitals (LCAO) approach, minimal basis. Density Functional Theory versus Hartree-Fock approximation.

Methods: Linear Augmented Plane Wave (LAPW), optimized LCAO and local orbitals (FPLO), pseudopotentials.

Chemical bond. Metals, semimetals, direct- and indirect-gap semiconductors, insulators. Special groups of solids - chemical trends: transition metals (hybridized d- and conduction states), tetrahedral semiconductors (hybridization gap, effects due to ionicity).

Electrical conductivity. Linear response. Optical transition&Optical constants. Kramers-Kronig relations. Photoemission (XPES, BIS).

Specific heat. Phonons. Debye and Einstein models. Anharmonic corrections.

Models for localized magnetic moments: Weiss molecular field model, Heisenberg and Izing model, crystal field theory. Models for delocalized magnetic moments: Stoner model of itinerant electron magnetism, Landau theory of weakly itinerant electron ferromagnetism, the linearized spin-fluctuation model, comparison.

Point defects: shallow impurities, deep impurities. Mixed crystals: Virtual Crystal Approximation (VCA) versus split band case, Green functions, Coherent Potential Approximation (CPA). Spectral density.

Last update: Diviš Martin, doc. RNDr., CSc. (13.05.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html