SubjectsSubjects(version: 861)
Course, academic year 2019/2020
Quantum Theory II - NFPL141
Title: Kvantová teorie II
Guaranteed by: Department of Condensed Matter Physics (32-KFKL)
Faculty: Faculty of Mathematics and Physics
Actual: from 2019
Semester: both
E-Credits: 5
Hours per week, examination: 2/1 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Note: course can be enrolled in outside the study plan
enabled for web enrollment
you can enroll for the course in winter and in summer semester
Guarantor: doc. RNDr. Martin Diviš, CSc.
doc. RNDr. Ilja Turek, DrSc.
Annotation -
Last update: T_KFES (23.05.2003)
A thorough two term course on quantum theory for students of both experimental and theoretical physics. It starts with the formal structure of QT and then builds up the standard techniques (perturbation theory stacionary and time dependent, variational principle, second quantisation, etc) to study the scattering theory, energy states in atoms and molecules, interactions of these systems with static fields and radiation. Dirac equation stands as an introduction to the relativistic QT.
Course completion requirements - Czech
Last update: doc. RNDr. Martin Diviš, CSc. (06.10.2017)

Podmínkou zakončení předmětu je zápočet a ústní zkouška.

Požadavky udělení zápočtu vyžadují aktivní účast na cvičení.

Požadavky absolvování ústní zkoušky odpovídají rozsahu sylabu prezentovaném

na přednášce.

Literature -
Last update: doc. RNDr. Martin Diviš, CSc. (13.05.2019)

J. Klima, Quantum mechanics II, scriptum

Syllabus -
Last update: doc. RNDr. Martin Diviš, CSc. (06.05.2005)

I. Many body problem in quantum theory

Hartree-Fock approximation, density functional theory.

II. Introduction to quantum chemistry

Adiabatic approximation, electronic, vibrational and rotational states of molecules, chemical bonding.

III. Extended systems

Bulk and surface properties, tight binding model and electron gas, Bloch theorem, impurity levels, correlation problem.

IV. Second quantization

Anihilation and creation operators, quantization of electromagnetic field.

V. Basics of relativistic electron theory

Dirac equation, corrections of (v/c)2 order.

Charles University | Information system of Charles University |