SubjectsSubjects(version: 928)
Course, academic year 2022/2023
   Login via CAS
Electron Microscopy - NFPL115
Title: Elektronová mikroskopie
Guaranteed by: Department of Physics of Materials (32-KFM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Miroslav Cieslar, CSc.
Classification: Physics > Solid State Physics
Is co-requisite for: NFPL116
Annotation -
Last update: T_KFK (17.04.2002)
Kinematical and dynamic theory of high energy electron diffraction, dynamic contrast theory of lattice defects. Fundamentals of high resolution transmission electron microscopy (HREM) and convergent beam electron diffraction (CBED).
Course completion requirements - Czech
Last update: doc. RNDr. Miroslav Cieslar, CSc. (14.05.2019)

Úspěšné složení ústní zkoušky.

Literature - Czech
Last update: doc. RNDr. Josef Pešička, CSc. (17.04.2014)

B.Smola: Transmisní elektronová mikroskopie ve fyzice pevných látek, skriptum SPN, Praha 1983.

M. Karlík: Úvod do transmisní elektronové mikroskopie, ČVUT, Praha 2011.

Requirements to the exam - Czech
Last update: doc. RNDr. Miroslav Cieslar, CSc. (14.05.2019)

Otázky ústní zkoušky se shodují se zněním sylabu.

Syllabus -
Last update: doc. RNDr. Miroslav Cieslar, CSc. (02.05.2022)

1. Wave-mechanical formulation of fast electrons in a periodic potential, Born approximation, extinction distance, the intensity of diffracted beam, amplitude diffracted by a distorted crystal. 2. Dynamical theory of diffraction, wave-optical and wave-mechanical formulation, equivalence of the two formulations of the dynamical theory, symmetry of the Bloch waves, phenomenological treatment of normal and anomalous absorption, introduction to the many-beam theory of diffraction, systematic reflections. 3. The matrix formulation of electron diffraction theory and the treatment of the many-beam effects, general matrix formulation of many-beam theory for imperfect crystals, contrast at planar faults, stacking faults, antiphase boundaries, antiphase, and phase boundaries, dislocation contrast, Takagi's equations, dislocation contrast in real crystals, contrast on particles and precipitates. 4. Phase contrast, transfer function in electron microscopy, Scherzer focus, simulations of lattice images, multislice and Bloch wave method. 5. Selected area diffraction and microdiffraction, CBED, ZOLZ and HOLZ in CBED, determination of specimen thickness and extinction depth from CBED. 6. Analytical electron microscopy, EDS, EELS. Introduction to scanning transmission electron microscopy.

Charles University | Information system of Charles University |