SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
Condensed Matter Theory I - NFPL108
Title in English: Teorie kondenzovaného stavu I
Guaranteed by: Institute of Physics of Charles University (32-FUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2013
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: prof. Pavel Lipavský, CSc.
Classification: Physics > Solid State Physics
Is co-requisite for: NFPL109
Annotation -
Last update: T_FUUK (24.05.2004)
Atomic vibrations are expressed in terms of bosonic fields (phonons), while electrons form a Fermi liquid embedeed in the periodic potential of nuclei. From these fields we evaluate elementary properties of crystals.
Aim of the course -
Last update: LIPAVSKY/MFF.CUNI.CZ (15.05.2008)

Introduction to the theory of solid state

Literature - Czech
Last update: LIPAVSKY/MFF.CUNI.CZ (15.05.2008)

CH. Kittel: Introduction to Solid State Physics. (1963), český překlad: Úvod do fyziky pevých látek

J. Celý: Kvazičástice v pevných látkách, SNTL, Praha (1977).

Teaching methods -
Last update: LIPAVSKY/MFF.CUNI.CZ (15.05.2008)

chalk talks

Requirements to the exam - Czech
Last update: LIPAVSKY/MFF.CUNI.CZ (15.05.2008)


Syllabus -
Last update: T_FUUK (24.05.2004)

In order to describe vibrations of atoms we introduce such basic concepts of solids as the Brillouine zone, Born-Karman boundary conditions or energy dispersion bands. Within the second quantisation we evaluate for instance the phonon specific heat, the neutron diffraction and the Mössbauer effect.

Within the approximation of free electrons we evaluate the electronic specific heat, spin and orbital magnetic susceptibilities, de Haas-van Alphen effect and cyclotron resonance.

For electrons in real crystals we derive electronic energy bands from the Bloch theorem. Using Kane and Kronig-Penney models we explain the origin and meaning of specific featuers of these bands. Within the second quantisation we introduce a filling of bands which is responsible for a distinction between metals and isolators. A competition of physical processes leading to these two types of crystals is demonstrated on the Peierls transition.

Effects of an electro-electron interaction we demonstrate on the superconductivity. After a phenomenological introduction involving the thermodynamic description, the two-fluid model, the London's theory and the Ginzbur-Landau theory, we derive some properties from the microscopic model of Bardeen, Cooper and Schrieffer.

A systematic theory of interacting electrons we introduce only for the zero temperature. We derive Feynman diagrams for the Coulomb interaction. We evaluate the polarization operator, from which we obtain the screening and the plasma oscillation.

Entry requirements -
Last update: LIPAVSKY/MFF.CUNI.CZ (15.05.2008)

quantum mechanics, basics of the quantum statistics

Charles University | Information system of Charles University |