SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
High Resolution NMR - NFPL091
Title in English: NMR vysokého rozlišení
Guaranteed by: Department of Low Temperature Physics (32-KFNT)
Faculty: Faculty of Mathematics and Physics
Actual: from 2009 to 2018
Semester: both
E-Credits: 4
Hours per week, examination: 3/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Note: you can enroll for the course in winter and in summer semester
Guarantor: prof. RNDr. Helena Štěpánková, CSc.
Classification: Physics > Solid State Physics
Annotation -
Last update: RNDr. Vojtěch Chlan, Ph.D. (22.05.2019)
High resolution NMR spectroscopy in condensed matters. Experimental techniques in liquids and solids. Application to the studies of structural and dynamical properties of measured systems. Multidimensional NMR spectroscopy. Suitable for 4.-5. year of solid state physics, biophysics, chemistry physics, physics of polymers.
Aim of the course -
Last update: T_KFNT (11.04.2008)

High resolution NMR spectroscopy in condensed matters.

Course completion requirements - Czech
Last update: prof. RNDr. Helena Štěpánková, CSc. (14.06.2019)

Ústní zkouška.

Literature - Czech
Last update: T_KFNT (23.05.2003)

[1] Slichter C.P.: Principles of Magnetic Resonance, rev. vyd. Springer Verlag, Berlin 1990

[2] Shaw D.: Fourier Transform N.M.R. Spectroscopy (second edition), ELSEVIER, N.Y. (1984)

[3] Schraml j.: Dvourozměrná NMR spektroskpie, ACADEMIA, Praha (1987)

[4] Friebolin H., Basic One and Two dimensional spectroscopy, Wiley-VCH, 1993

[6] Sanders J. K. M., Hunter B. K., Modern NMR Spectroscopy - A Guide for Chemists, OUP Oxford, 1993

[7] Gunther H., NMR Spectroscopy (Basic Principles, Concepts and Applications in Chemistry), J. Wiley & Sons, 1995

Requirements to the exam - Czech
Last update: prof. RNDr. Helena Štěpánková, CSc. (09.10.2017)

Zkouška je ústní, otázky jsou kladeny dle syllabu.

Syllabus -
Last update: T_KFNT (23.05.2003)
1. Introduction
Nuclear spin and magnetic moment, nuclear electric quadrupolar moment. Energy in a static magnetic field. Population of energy levels. Rotating coordination system. Radiofrequency field. Bloch equations. Pulse experiments - FID, spin echo. Fourier transform. Experimental aspects of NMR spectroscopy.

2. Basic interactions
Nuclear dipol-dipol interaction, magnetic interaction of electrons and nuclei, chemical shift, indirect spin-spin coupling. Quadrupolar interaction. Anisotropy of interactions. Time averaging in liquids. Spin Hamiltonian. Analysis of spectra.

3. 1D spectroscopy
1D NMR experiments using complex pulse sequences and field gradients. J- modulated spin echo, pulsed gradient spin echo, spin decoupling, NOE spectroscopy, signal enhancement by polarisation transfer. SPI, INEPT, reverse INEPT, DEPT, INADEQUATE. Suppression of water signal.

4. High resolution in solids
Magic angle spinning. Cross polarisation magic angle spinning. Special pulse series.

5. 2D spectroscopy
Basic concept. 2D J-resolved NMR (homo- and heteronuclear). 2D correlated NMR spectroscopy. Connection through bonds or space. HETCORR, COSY, INADEQUATE, HSQC, HMQC, NOESY, EXCY experiments.

6. Relaxations
Spin-lattice, spin-spin relaxation mechanisms. Experimental determination. Correlation time. Correlation function, spectral density. Dependence on molecular size. Segmental mobilities.

Charles University | Information system of Charles University |