Elements of quantum theory of solids focused on electronic structure and dynamics of elementary excitations. A lecture for students oriented on condensed-matter physics and materials research. Topics: Geometry, atomic structure and quantum chemistry of condensed systems. Quantum many-particle problem. Phonons and electrons in periodic structures. Dimensionality and boundary conditions. Mean-field approximation for interacting systems. Ab initio methods. Jellium, electrons and plasmons. Point defects and alloys. Electron-phonon interaction. Relaxation phenomena, linear and non-linear response.
Last update: T_KFES (23.05.2003)
Základy kvantové teorie pevných látek se zaměřením na elektronovou strukturu a dynamiku elementárních excitací. Přednáška určená studentům orientovaným na fyziku kondenzovaných látek a materiálový výzkum. Témata: Geometrie, atomová struktura a kvantová chemie kondenzovaných soustav. Kvantový problém mnoha částic. Fonony a elektrony v periodických strukturách. Rozměrové vlivy, dimenze soustavy a vliv okrajových podmínek. Započtení interakcí metodou středního pole. Ab initio metody. Jellium, elektrony a plasmony. Bodové defekty, slitiny. Elektron-fononová interakce. Relaxace, lineární a nelineár
Last update: T_KFES (23.05.2003)
Literature - Czech
1. Ch. Kittel: Kvantová teória tuhých látok (ALFA, Bratislava, 1977). 2. J. Celý: Kvazicástice v pevných látkách (SNTL, Praha, 1977).
Last update: T_KFES (23.05.2003)
Syllabus -
FPL026
Geometry of condensed systems.
Atomic structure and quantum chemistry of condensed systems.
Quantum problem of many particles with electromagnetic interaction, "exact results" and basic approximations.
Phonons and electrons in periodic structures as a one-particle problem.
Dimensionality and boundary conditions. Limit of infinite systems, open boundary conditions.
Mean-field approximation for interacting systems. Electron gas and selfconsistent one-particle approximations. Ab initio methods for geometry optimization and electronic structure calculations.
Jellium, electrons and plasmons.
Point defects and alloys.
Electron transport: Kubo linear response theory, Boltzmann equation.
Electron-phonon interaction: relaxation, non-adiabatic processes, negative U, Cooper phenomenon.
High-frequency perturbations, relaxation phenomena, linear and non-linear response. Magnetic resonance. Interband optical transitions.