SubjectsSubjects(version: 861)
Course, academic year 2019/2020
  
Computational Physics and Materials Design - NFPL011
Title: Výpočtová fyzika a návrh materiálů
Guaranteed by: Department of Condensed Matter Physics (32-KFKL)
Faculty: Faculty of Mathematics and Physics
Actual: from 2014
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Note: enabled for web enrollment
Guarantor: RNDr. Karel Carva, Ph.D.
doc. RNDr. Ilja Turek, DrSc.
Classification: Physics > Solid State Physics
Annotation -
Last update: Mgr. Kateřina Mikšová (13.05.2019)
First-principles (ab initio) electronic structure calculations - theoretical background (many-body problems, perturbation theory, Green functions, tight-binding model, open systems, substitutional disorder) - application to predict real materials' properties (structure and density, magnetic structure, transport properties), - ab initio methods (KKR, LCAO, LAPW, LMTO, ASW) - handling of corresponding programs (WIEN2k, elk, TB-LMTO) Recommended for master students or post-graduate students.
Course completion requirements - Czech
Last update: RNDr. Karel Carva, Ph.D. (17.10.2017)

Podmínkou zakončení předmětu je ústní zkouška.

Literature -
Last update: CARVA/MFF.CUNI.CZ (20.09.2009)

1. I. Turek, V. Drchal, J. Kudrnovský, M. Šob, P. Weinberger, Electronic Structure of Disordered Alloys, Surfaces and Interfaces, Kluwer, Boston, 1997.

2. A. Gonis, Theoretical Materials Science, Materials Research Society, Warrendale, PA, 2000

3. WIEN2k user guide: http://www.wien2k.at/reg_user/textbooks/usersguide.pdf

Requirements to the exam - Czech
Last update: RNDr. Karel Carva, Ph.D. (17.10.2017)

Požadavky absolvování ústní zkoušky odpovídají rozsahu sylabu prezentovaném

na přednášce.

Syllabus -
Last update: CARVA/MFF.CUNI.CZ (20.09.2009)

I. Overview - what can be calculated from first principles, advantages / disadvantages

II. Common formalism:

  • Many body problem - DFT, correlations, various functionals
  • Perturbation theory, Green's functions
  • Tight-binding method (TB), open systems
  • Substitutional disorder - various approximations

III. Ab initio methods, selections of the basis and potentials

  • Linearization vs. Korringa-Kohn-Rostoker approach (KKR)
  • Linear muffin-tin orbitals (LMTO),
  • Linearized augmented plane waves (LAPW),
  • Augmented spherical waves (ASW),
  • Linear combination of atomic orbitals (LCAO)
  • Full potential vs. spherically symmetric potential
  • Pseudopotentials

IV. Applications - properties, its dependences:

  • Density of states, band structure
  • Total energy, equilibrium volume and lattice parameters
  • Local magnetic moments, exchange interactions, spin structures, Curie temperature
  • Transport: ballistic/diffusive, conductivity, spintronics, optical properties

V. Programs to be trained:

  • WIEN2k ((L)APW + local orbitals)
  • TB-LMTO based program
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html