|
|
|
||
Introduction to the theory of nonequilibrium processes for the students in fields: Biophysics and Chemical
Physics, Optics and Optoelectronics, Condensed Matter Physics or other theoretical fields.
Last update: Procházka Marek, prof. RNDr., Ph.D. (17.06.2020)
|
|
||
Students will be introduced into the subject of nonequilibrium statistical physics, and learns the most important techniques for description of nequilibrium processes. Last update: Šanda František, doc. Mgr., Ph.D. (20.10.2017)
|
|
||
Oral exam focused on 3 topics selected to meet student interest. Last update: Šanda František, doc. Mgr., Ph.D. (28.04.2020)
|
|
||
Oral exam focused on 3 topics selected according to the student interest Last update: Šanda František, doc. Mgr., Ph.D. (28.04.2020)
|
|
||
lecture Last update: Šanda František, doc. Mgr., Ph.D. (20.10.2017)
|
|
||
Podrobná znalost cca tří kapitol ze skript, zvolených dle vlastního zájmu, povšechná zbývajících. Last update: Šanda František, doc. Mgr., Ph.D. (12.06.2019)
|
|
||
Statistical description of many-body dynamics, random (stochastic) process. BBGKY hierarchy of evolution equations. Quasi(classical) particle out of equilibrium -Boltzmann equation, H-theorem. Diffusion dynamics- Langevin dynamics, Difusion equation (Ficks, Fokker-Planck), Fractals of Brownian motion, Markov process. Anomalous statistics and diffusion- Levy skew alpha-stable distribution, Levy walks, sub- and super-diffusion. Quantum theory of relaxation in open systems-Liouville space, projection methods, convolution and convolutionless master equations, stochastic quantum dynamics. Kubo theory of response - Response functions. Fluctuation-dissipation theorem. Line-shape theory. Gaussian processes: microscopic quantum model, cumulants. Nonequilibrium thermodynamics- Fluctuation theorems, Jarzynski relation, linear thermodynamics.
Last update: Šanda František, doc. Mgr., Ph.D. (03.03.2023)
|