SubjectsSubjects(version: 908)
Course, academic year 2022/2023
   Login via CAS
Nonequilibrium Statistical Physics and Thermodynamics - NFPL004
Title: Nerovnovážná statistická fyzika a termodynamika
Guaranteed by: Institute of Physics of Charles University (32-FUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. Mgr. František Šanda, Ph.D.
prof. Pavel Lipavský, CSc.
Classification: Physics > Solid State Physics
Annotation -
Last update: prof. RNDr. Marek Procházka, Ph.D. (17.06.2020)
Introduction to the theory of nonequilibrium processes for the students in fields: Biophysics and Chemical Physics, Optics and Optoelectronics, Condensed Matter Physics or other theoretical fields.
Aim of the course -
Last update: doc. Mgr. František Šanda, Ph.D. (20.10.2017)

Students will be introduced into the subject of nonequilibrium statistical physics,

and learns the most important techniques for description of nequilibrium processes.

Course completion requirements -
Last update: doc. Mgr. František Šanda, Ph.D. (28.04.2020)

Oral exam focused on 3 topics selected to meet student interest.

Literature -
Last update: doc. Mgr. František Šanda, Ph.D. (28.04.2020)

Oral exam focused on 3 topics selected according to the student interest

Teaching methods -
Last update: doc. Mgr. František Šanda, Ph.D. (20.10.2017)

lecture

Requirements to the exam - Czech
Last update: doc. Mgr. František Šanda, Ph.D. (12.06.2019)

Podrobná znalost cca tří kapitol ze skript, zvolených dle vlastního zájmu, povšechná zbývajících.

Syllabus -
Last update: doc. Mgr. František Šanda, Ph.D. (20.10.2017)

Statistical description of many-body dynamics. BBGKY hierarchy of evolution equations.

Quasi(classical) particle out of equilibrium -Boltzmann equation ,

Diffusion dynamics- stochastic (Langevin) dynamics, Difusion equation (Ficks, Fokker-Planck), Fractals of Brownian motion;

Anomalous statistics and diffusion- Levy skew alpha-stable distribution, Levy walks, sub- and super-diffusion,

Quantum dynamics of stochastic or open systems-Liouville space, projection methods, convolution and convolutionless master equations, stochastic quantum dynamics.

Kubo retheory of response - Response functions and analytic properties (, Kramers-Kronig relation, Wiener-Khintchine theorem, Onsager reciprocity). Line-shape theory

Gaussian processes: microscopic quantum model, cumulants,

Nonequilibrium thermodynamics- Fluctuation theorems, Jarzynski relation, linear thermodynamics

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html