|
|
|
||
Preparation of nanocrystals, Microstructure, processing, thermodynamics and kinetics, electrical and optical properties,
Magnetic properties. Methods of the characterization of nanomaterials. Selected applications of nanomaterials
Last update: T_KEVF (24.05.2007)
|
|
||
The condition for completing the course is successful passing of the exam. Last update: Mikšová Kateřina, Mgr. (24.02.2022)
|
|
||
Nanomaterials, Synthesis, Properties and Application. Ed. By A S Edelstein and R Cammarata. Inst. of Physics Publishing, 1996 G.A. Ozin, A.C. Arsenault, Nanochemistry, RSC Publ. Cambridge, 2005 S.Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes, Wiley, Darmstadt, 2003 Z Weiss, G. Simha-Martynková, O. Šustai, Nanostruktura uhlíkových materiálů, VŠB TU Ostrava, 2005 G. Gao, Nanostructures and Nanomaterials, Imperial College Press, London, 2006 Y. Gogotsi, Nanomaterials Handbook, CRC Taylor and Francis, New York, 2006 J. Cejka and N. Zilkova, "Synthesis and Structure of Zeolites" Chemické Listy, Issue 5, Vol. 94 (2000) p. 278 Last update: Mikšová Kateřina, Mgr. (23.02.2022)
|
|
||
The course ends with an exam. The exam is oral. The requirements for the exam correspond to the syllabus to the extent that was presented at the lecture. Last update: Kalbáčová Vejpravová Jana, prof. RNDr., Ph.D. (24.02.2022)
|
|
||
1. Introduction
1.1 Structure of classic crystals and nanocrystals, fotonic crystals, nanowires, nanodesky, Q-crystals. 1.2 Electronic structure of macroscopic crystals and nanocrystals 2. Preparation of nanocrystals 2. 1. Formation of nanoparticles Physical and chemical methods, Classical nucleation theory, Laser vaporization and laser photolysis of organometalic compounds, coalescence, coagulation and size distribution, mechanical attrition (high energy ball milling), mechanochemistry,
2.2. Particle synthesis by chemical route Nucleation and grow from solution, aqueous methods, colloids, micelles, polymers, glasses, non-aqueous methods, ceramics, composites, spray pyrolysis
2.3 Sol-gel methods, supramolecular templates, solvotermal recrystalisation Alkoxide solution routes, colloidal sols and suspensions, aging and syneresis of gels, multicomponent oxides, Microporous monoliths, Infiltrated composites, citrates route, consolidation of nanomaterials by compaction and sintering.
2.4 Self-assembled nanostructures, LB films
2.5 Thin layers: CVD, PVD, MBE 3. Examples of nanomaterials Microstructure, processing, thermodynamics and kinetics, electrical and optical properties, Magnetic properties.
3.1 Magnetic nanoparticles and nanocomposites Preparation methods, Monodomain particles, Superparamagnetismus, Critical size, Magnetic properties, Application.
3.2. Semiconductor nanoparticles. Quantum confinement, Quantum dots, Nanostructured silicon, Semiconductor III-V and II-VI, Optical properties,
3.3. Zeolites, molecular sieves
3.4. Carbon nanomaterials nanotubes, fulerens, nanodiamant, etc.
3.5. Oxidic nanomaterials TiO2, ZnO, ternary oxides 4. Methods of the characterization of nanomaterials 4.1 Electron microscopy: SEM, TEM 4.2 Microscopy using scanning probe: STM, AFM, SNOM 4.3 Study of the porous structure: adsorption 4.4 Analyse of surface: XPS, AES 5. Selected applications of nanomaterials 5.1 Nanoelectronics , electrochromic a autoemission displays 5.2 Conversion and accumulation of energy: solar cells, battery, supercondensators, fuel cells, hydrogen industry 5.3. Self-cleaning and antibacterial materials 5.4 Nanomanipulation, nanomotors 5.5 Nanofibres, nanocomposites 5.6 Bioaplication, nanomedicine, sensors, health risks of nanomaterials Last update: T_KEVF (24.05.2007)
|