Computational Physics I - NEVF526
|
|
|
||
Main directions of classical computational physics. Basic techniques of computer modelling - Monte Carlo method, molecular dynamics method, fluid modelling, hybrid modelling. Application of computer modelling in physics.
Last update: T_KEVF (16.05.2005)
|
|
||
Zápočet se uděluje za vypracování zápočtového programu/projektu, jehož zadání je stanoveno po osobní konzultaci s vyučujícím. Charakter zápočtu umožňuje jeho opakování. Last update: Pavlů Jiří, doc. RNDr., Ph.D. (14.06.2019)
|
|
||
Haile J.M.: Molecular Dynamics Simulation, J. Wiley Inc., New York 1992. Rapaport D.C.: The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge 1995. Hockney R.W., Eastwood J.W.: Computer Simulation Using Particles, Taylor and Francis, New York 1988. Demnath L., Bhatta D.: Integral Transforms and Their Applications, Taylor and Francis, New York 2007. Hrach R.: Počítačová fyzika I, II, PF UJEP, Ústí nad Labem 2003. Last update: T_KEVF (05.05.2010)
|
|
||
1. Main directions of computational physics
Hardware and software. Structured programming. Object oriented programming. 2. Computer modelling Relation reality - model. Principles of mathematical and computer modelling. 3. Monte Carlo method Basic techniques, generation of random numbers, transformation of random quantities. Application of Monte Carlo method in mathematics. Application of Monte Carlo in physics, transport problem. Other problems. 4. Molecular dynamics method Basic techniques, working area, boundary conditions, force calculation, equations of motion. Problems. PIC method, techniques PIC-NGP and PIC-CIC. Modern efficient algorithms for the force calculations. 5. Hybrid particle modelling 6. Basic principles of fluid modelling Application of fluid modelling in physics. 7. Hybrid modelling Combination of fluid and particle modelling. Application in physics. Last update: T_KEVF (16.05.2005)
|