SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Analysis of experimental data in plasma physics - NEVF176
Title: Experimentální analýza dat ve fyzice plazmatu
Guaranteed by: Department of Surface and Plasma Science (32-KFPP)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:0/2, C [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: Mgr. Jakub Seidl, Ph.D.
Ing. Matěj Tomeš, M.Sc., Ph.D.
Teacher(s): Mgr. Jakub Seidl, Ph.D.
Annotation -
The goal of the course is to provide students with the opportunity to gain practical experience by solving projects in the field of "data science". Several tasks focused on the analysis of data measured in fusion experiments with magnetic confinement of plasma using various diagnostic systems (microwaves, visible spectroscopy, infrared cameras, electrical probes, etc.) give students the chance to try the application of Bayesian approach, neural networks, and computations on graphics cards to obtain the required information about the plasma state.
Last update: Pavlů Jiří, doc. RNDr., Ph.D. (09.05.2024)
Course completion requirements - Czech

Vypracování zápočtových projektů - aplikace analýzy dat

Last update: Pavlů Jiří, doc. RNDr., Ph.D. (25.04.2024)
Literature -

[1] Bishop, C. Pattern Recognition and Machine Learning, Springer, New York, 2007.

[2] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016

[3] J. S. Bendat, A. G. Piersol, Random Data, Wiley, 2010

Last update: Pavlů Jiří, doc. RNDr., Ph.D. (09.05.2024)
Requirements to the exam - Czech

Vypracování zápočtových projektů - aplikace analýzy dat

Last update: Pavlů Jiří, doc. RNDr., Ph.D. (25.04.2024)
Syllabus -

1. The role and types of data in fusion research, description of a physical experiment, statistical models, frequentist vs Bayesian approaches

2. The significance of forward and backward modelling of diagnostics for physics experiments

3. Bayesian models and solution methods

4. Forward modelling of optical diagnostics of plasma

5. Example of an inverse problem - tomographic reconstruction - classical vs Bayesian approach

6. Integrated data analysis - merging information from multiple diagnostics

7. Gaussian processes and Bayesian optimisation of black box models

8. Application of machine learning, introduction to types and uses of neural networks

9. Use of convolutional neural networks for image information processing

10. Processing time series - spectral analysis, autoregressive models

11. Generative modelling of experimental data, outlier detection

12. Acceleration of computations on GPUs

Last update: Pavlů Jiří, doc. RNDr., Ph.D. (09.05.2024)
Learning outcomes

Acquired skills: Application of statistical data analysis using the Bayesian approach, data analysis using neural networks, acceleration of common computations using graphics cards, creating forward and backward models, experience with participation in "data science" projects and the common approach in "research and development".

Last update: Pavlů Jiří, doc. RNDr., Ph.D. (09.05.2024)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html