|
|
|
||
The goal of the course is to provide students with the opportunity to gain practical experience by solving projects in
the field of "data science". Several tasks focused on the analysis of data measured in fusion experiments with
magnetic confinement of plasma using various diagnostic systems (microwaves, visible spectroscopy, infrared
cameras, electrical probes, etc.) give students the chance to try the application of Bayesian approach, neural
networks, and computations on graphics cards to obtain the required information about the plasma state.
Last update: Pavlů Jiří, doc. RNDr., Ph.D. (09.05.2024)
|
|
||
Vypracování zápočtových projektů - aplikace analýzy dat Last update: Pavlů Jiří, doc. RNDr., Ph.D. (25.04.2024)
|
|
||
[1] Bishop, C. Pattern Recognition and Machine Learning, Springer, New York, 2007. [2] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016 [3] J. S. Bendat, A. G. Piersol, Random Data, Wiley, 2010 Last update: Pavlů Jiří, doc. RNDr., Ph.D. (09.05.2024)
|
|
||
Vypracování zápočtových projektů - aplikace analýzy dat Last update: Pavlů Jiří, doc. RNDr., Ph.D. (25.04.2024)
|
|
||
1. The role and types of data in fusion research, description of a physical experiment, statistical models, frequentist vs Bayesian approaches 2. The significance of forward and backward modelling of diagnostics for physics experiments 3. Bayesian models and solution methods 4. Forward modelling of optical diagnostics of plasma 5. Example of an inverse problem - tomographic reconstruction - classical vs Bayesian approach 6. Integrated data analysis - merging information from multiple diagnostics 7. Gaussian processes and Bayesian optimisation of black box models 8. Application of machine learning, introduction to types and uses of neural networks 9. Use of convolutional neural networks for image information processing 10. Processing time series - spectral analysis, autoregressive models 11. Generative modelling of experimental data, outlier detection 12. Acceleration of computations on GPUs
Last update: Pavlů Jiří, doc. RNDr., Ph.D. (09.05.2024)
|
|
||
Acquired skills: Application of statistical data analysis using the Bayesian approach, data analysis using neural networks, acceleration of common computations using graphics cards, creating forward and backward models, experience with participation in "data science" projects and the common approach in "research and development". Last update: Pavlů Jiří, doc. RNDr., Ph.D. (09.05.2024)
|