Introduction to Statistical Data Processing in the Surface and Plasma Science - NEVF164
|
|
|
||
The aim of the course is to give introduction to statistical data processing used in physics in general with emphasis
on plasma and surface physics. The covered topics are: examples of basic probability distributions, data
processing methods, estimation of parameters of linear and nonlinear models and introduction to random
processes. Utilization of presented methods will be shown using examples from surface and plasma physics.
Last update: T_KEVF (15.05.2017)
|
|
||
Podmínkou zakončení předmětu je úspěšné složení zkoušky, tj. hodnocení zkoušky známkou "výborně", "velmi dobře" nebo "dobře". Zkouška musí být složena v období předepsaném harmonogramem akademického roku, ve kterém student předmět zapsal. Last update: Pavlů Jiří, doc. RNDr., Ph.D. (14.06.2019)
|
|
||
Anděl J.: Matematické statistika, SNTL, Praha 1978. Barlow R.J. , Statistics. A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley & Sons, 1993. Press W.H. et al.: Numerical Recipes , Cambridge University Press, Cambridge, 1992. Tutubalin V.N.: Teorie pravděpodobnosti, SNTL, Praha 1978. Last update: T_KEVF (15.05.2017)
|
|
||
Zkouška je ústní a požadavky odpovídají sylabu předmětu v rozsahu, který byl prezentován na přednášce. Last update: Dohnal Petr, doc. RNDr., Ph.D. (01.03.2018)
|
|
||
Statistical data processing of experimental data
classical probability, conditional probability, Bayes theorem, random variable, moments of random variable, probability density function and distribution function, examples of probability distributions (discrete,continuous), random vector, estimates and their bias, correlation and covariance, correlation coefficients. Moment-generating function. Estimation of parameters of models maximum likelihood estimation, least square method (general linear model), normal equations and their solution, Singular Value Decomposition, examples, estimation of parameters of nonlinear models, Marquardt method, goodness of fit, confidence intervals estimation, non-parametric models. Random processes Stationary and ergodic processes, convolution, Fourier transform, power spectrum, Wiener-Khinchin theorem, data sampling, Nyquist frequency, discrete Fourier transform, spectral analysis Examples of data processing procedures. Last update: T_KEVF (15.05.2017)
|