SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Introduction to Computational Physics - NEVF102
Title: Úvod do počítačové fyziky
Guaranteed by: Department of Surface and Plasma Science (32-KFPP)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: summer
E-Credits: 6
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Radek Plašil, Ph.D.
Teacher(s): doc. RNDr. Radek Plašil, Ph.D.
Annotation -
Basic numerical methods - approximation, numerical integration and differentiation, solution of linear algebraic equations, solution of transcendent equations, solution of ordinary differential equations, solution of partial differential equations. Main directions of classical computational physics. Computer modelling. Application of computer modelling and other methods of computational physics in physics.
Last update: T_KEVF (07.05.2005)
Course completion requirements - Czech

Podmínkou zakončení předmětu je úspěšné složení zkoušky, získání zápočtu je podmínkou pro konání zkoušky.

Pro udělení zápočtu student vypracuje dva počítačové modely dle zadání na cvičeních a osobně je prezentuje.

Last update: Plašil Radek, doc. RNDr., Ph.D. (14.02.2022)
Literature - Czech

Vicher M.: Numerická matematika, skripta, PF UJEP, Ústí nad Labem 2003.

Hrach R.: Numerické metody ve fyzikální elektronice, skripta, SPN, Praha 1981.

Hrach R.: Počítačová fyzika I, II, PF UJEP, Ústí nad Labem 2003.

Last update: T_KEVF (07.05.2004)
Requirements to the exam - Czech

Zkouška je ústní a student dostává typicky dvě otázky ze sylabu předmětu v rozsahu, který byl prezentován na přednášce.

Last update: Plašil Radek, doc. RNDr., Ph.D. (01.03.2018)
Syllabus -
1. Basic numerical methods
Numerical mathematics - representation of numbers, accuracy, errors. Approximation - interpolation, least squares approximation, spline functions. Numerical integration and differentiation - classical formulae for equally spaced abscissas, Gaussian quadrature. Solution of linear algebraic equations - Gaussian elimination, Gauss-Jordan elimination, iterative methods. Root finding and solution of nonlinear sets of equations. Integration of ordinary differential equations - Euler method and its modifications, Runge-Kutta methods, predictor-corrector methods. Solution of partial differential equations - difference equations, relaxation method, super-relaxation method.

2. Basics of classical computational physics
Main directions of classical computational physics. Computer modelling - Monte Carlo method, molecular dynamics method, fluid modelling, hybrid modelling. Application of computational physics in plasma physics and thin film physics.

Last update: T_KEVF (07.05.2005)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html