SubjectsSubjects(version: 850)
Course, academic year 2019/2020
   Login via CAS
Coloring of Graphs and Other Combinatorial Structures - NDMI060
Title in English: Barevnost grafů a kombinatorických struktur
Guaranteed by: Computer Science Institute of Charles University (32-IUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2019 to 2019
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: English, Czech
Teaching methods: full-time
Guarantor: doc. Mgr. Zdeněk Dvořák, Ph.D.
Class: DS, diskrétní modely a algoritmy
Informatika Mgr. - Diskrétní modely a algoritmy
Classification: Informatics > Discrete Mathematics
Annotation -
Last update: T_KAM (26.04.2003)
Coloring of graphs and their classes (in particular, graphs on surfaces). Proof techniques used to bound the chromatic number of graphs (the probabilistic method, an algebraic approach, discharging).Tutte's polynomial. Generalizations and special types of coloring: diagonal and cyclic coloring, list-coloring, channel assignment, L(2,1)-coloring, T-coloring, etc. Coloring of other combinatorial structures.
Course completion requirements -
Last update: RNDr. Ondřej Pangrác, Ph.D. (12.06.2019)

Oral exam.

Literature - Czech
Last update: T_KAM (26.04.2003)

1. Bollobas, B.: Modern Graph Theory. Springer-Verlag, New York (1998).

2. Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. Discrete Mathematics and Optimization. Wiley and Sons, New York, 1995.

3. R. Diestel, "Graph Theory," Graduate Texts in Math., Vol. 173, Springer-Verlag, New York, NY, 1997.

Requirements to the exam -
Last update: doc. Mgr. Zdeněk Dvořák, Ph.D. (06.10.2017)

Oral exam consisting of 2-3 questions on subjects covered by the lectures.

Syllabus -
Last update: doc. Mgr. Zdeněk Dvořák, Ph.D. (21.09.2016)

Coloring of graphs and their classes (in particular, graphs on surfaces). Proof techniques used to bound the chromatic number of graphs (the probabilistic method, an algebraic approach, discharging).Tutte's polynomial. Generalizations and special types of coloring: diagonal and cyclic coloring, list-coloring, channel assignment, L(2,1)-coloring, T-coloring, etc. Coloring of other combinatorial structures.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html