The selection of topics from combinatorics in this course varies from year to year, but will include aspects of graph
homomorphisms, graph polynomials (in particular the Tutte polynomial and related polynomials) and their
applications (e.g. in statistical physics), and duality in combinatorics (e.g. colourings and flows, geometric duality,
Ramsey duality, categorical duality). The course is offered to doctoral students, and will be given in English.
Prerequisite for the course is a background in discrete mathematics and graph theory.
Last update: Macharová Dana, JUDr. (01.10.2013)
Přednáška určená doktorandskému studiu.
Last update: T_KAM (26.04.2002)
Course completion requirements -
Oral exam.
Last update: Pangrác Ondřej, RNDr., Ph.D. (07.06.2019)
Ústní zkouška.
Last update: Pangrác Ondřej, RNDr., Ph.D. (07.06.2019)
Literature -
References will be given during the course and will depend on the syllabus.
Last update: IUUK (04.05.2015)
Literatura závisí na zvoleném tématu a bude oznámena během semestru.
Last update: IUUK (04.05.2015)
Requirements to the exam - Czech
Zkouska je ustni, okruhy otazek pokryvaji temata dana sylabem predmetu s prihlednutim k latce odprednesene behem semestru.
Last update: Hubička Jan, doc. Mgr., Ph.D. (12.10.2017)
Syllabus -
The syllabus varies from year to year and is advertised at the beginning of the semester. Topics are usually centred around the Tutte polynomial and its applications, duality in combinatorics, or graph homomorphisms.
Last update: IUUK (04.05.2015)
Sylabus se mění každý rok a je oznámen na začátku semestru. Tento rok se budeme věnovat klasické a strukturální Ramseyově teorii.
Last update: Hubička Jan, doc. Mgr., Ph.D. (12.10.2017)