SubjectsSubjects(version: 837)
Course, academic year 2018/2019
   Login via CAS
Combinatorial Counting - NDMI015
Title in English: Kombinatorické počítání
Guaranteed by: Department of Applied Mathematics (32-KAM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2017
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Additional information:
Guarantor: doc. RNDr. Martin Klazar, Dr.
Class: Informatika Mgr. - Diskrétní modely a algoritmy
Classification: Informatics > Discrete Mathematics
Annotation -
Last update: T_KAM (07.05.2001)
Introduction to enumerative combinatorics. Basic techniques (ordinary and exponential generating functions, Lagrange inversion formula, bijective proofs) are explained on a number of concrete examples in which we shall count combinatorial structures of various kinds.
Aim of the course -
Last update: T_KAM (20.04.2008)

Students learn the fundamental technique of combinatorial enumeration, which are generating functions.

Literature -
Last update: T_KAM (20.04.2008)

R.P. Stanley: Enumerative combinatorics I, Wandswort & Brooks, 1986.

R.P. Stanley: Enumerative combinatorics II, Cambridge University Press, 1999.

Requirements to the exam -
Last update: doc. RNDr. Martin Klazar, Dr. (12.10.2017)

Exam is oral, with written preparation. For concrete requirements see the above homepage of the course.

Syllabus -
Last update: T_KAM (20.04.2008)

1. Problems of combinatorial enumeration. 2. Bijections. 3. Generating functions. 4. Exponential and composition formula. 5. Lagrange's inversion formula. 6. Asymptotic estimates.

Charles University | Information system of Charles University |