SubjectsSubjects(version: 849)
Course, academic year 2019/2020
   Login via CAS
Projective Geometry II - NDGE008
Title in English: Projektivní geometrie II
Guaranteed by: Department of Mathematics Education (32-KDM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2016
Semester: summer
E-Credits: 6
Hours per week, examination: summer s.:2/2 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Guarantor: Mgr. Lukáš Krump, Ph.D.
prof. RNDr. Adolf Karger, DrSc.
Class: M Bc. DGZV
M Bc. DGZV > Povinné
Classification: Mathematics > Geometry
Incompatibility : NMUG303
Interchangeability : NMUG303
Is incompatible with: NMUG303
Is interchangeable with: NMUG303
Annotation -
Last update: G_M (09.10.2001)
Projective extension of affine space, projective space, homogeneous coordinates. Colineations. Quadrics, their properties and classification.
Aim of the course -
Last update: T_KDM (19.05.2008)

This course helps to obtain theoretical background for teaching mathematics at high school.

Literature -
Last update: T_KDM (13.05.2008)

M. Sekanina a kol., Geometrie I, II, Státní pedagogické nakladatelství Praha 1986, 1988.

J. Janyška, A. Sekaninová; Analytická teorie kuželoseček a kvadrik, Masarykova univerzita v Brně, 2001

M. Lávička:Geometrie 2; pomocný učební text - ZČU Plzeň, 2004, http://home.zcu.cz/~lavicka/subjects/G2/texty/G2_text.pdf

Teaching methods -
Last update: T_KDM (20.05.2008)

Lectures and exercises.

Syllabus -
Last update: T_KDM (13.05.2008)

1. Basic properties of projective space. Definition of a projective space over R and C, linear objects, duality, corelation.

2. Classifications of quadrics in a projective space. Definition of a quadric in projective space, inertia theorem, nullity space of a quadric, classification of quadrics especially for n = 2, 3.

3. Desargues, Pappos and Pascal theorem.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html