SubjectsSubjects(version: 837)
Course, academic year 2018/2019
   Login via CAS
Quantum chemistry for extended systems - NBCM173
Title in English: Kvantová chemie rozlehlých systémů
Guaranteed by: Department of Chemical Physics and Optics (32-KCHFO)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: Mgr. Jiří Klimeš, Ph.D.
Annotation -
Last update: RNDr. Vojtěch Kapsa, CSc. (26.04.2018)
The lectures aim at introducing the theoretical grounds and basic concepts behind development and application of advanced quantum chemistry methods to molecules and extended systems. The lectures are suited for Master and PhD students.
Aim of the course -
Last update: RNDr. Vojtěch Kapsa, CSc. (26.04.2018)

The lectures aim at introducing the theoretical grounds and basic concepts behind development and application of advanced quantum chemistry methods to molecules and extended systems.

Course completion requirements -
Last update: Mgr. Jiří Klimeš, Ph.D. (26.04.2018)

The exam is oral. Questions will be from the material presented during the lectures.

Literature -
Last update: RNDr. Vojtěch Kapsa, CSc. (26.04.2018)

Gordon M. S. (Ed.): Fragmentation: Toward Accurate Calculations on Complex Molecular Systems, John Wiley & Sons Ltd. 2017.

Hättig C., Klopper W., Köhn A., Tew D. P.: Chem. Rev. 112(1), 4-74 (2012).

Parr R.G., Yang W.: Density-Functional Theory of Atoms and Molecules, Oxford University Press 1989.

Shavitt I. and Bartlett R. J.: Many-Body methods in Chemistry and Physics, Cambridge University Press 2009.

Stone A.: The Theory of Intermolecular Forces, Oxford University Press 2013.

Szabo A., Ostlund N.S.: Modern Quantum Chemistry, McGraw-Hill 1989.

Teaching methods -
Last update: RNDr. Vojtěch Kapsa, CSc. (26.04.2018)

lecture

Syllabus -
Last update: RNDr. Vojtěch Kapsa, CSc. (26.04.2018)

1. Introduction: open and periodic boundary conditions, reciprocal space, Brillouin zone, symmetry; basis sets -- gaussian, plane waves, grids; total energy methods, exchange-correlation hole.

2. Mean field methods: Hartree-Fock, integrals, convergence and corrections.

3. Correlated methods: perturbation theory and diagrams; other approaches; cusp and methods for treating it; integrals, convergence and corrections; canonical expressions for the correlation energy and reformulations using e.g. Laplace transform.

4. Locality of correlations: density matrix; localisation of states and projection on local basis; embedding; asymptotic convergence of long range correlations.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html