SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Magnetic Resonance Methods in Biophysics - NBCM112
Title: Metody magnetické rezonance v biofyzice
Guaranteed by: Department of Low Temperature Physics (32-KFNT)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: summer
E-Credits: 4
Hours per week, examination: summer s.:3/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: Mgr. Václav Římal, Ph.D.
prof. RNDr. Helena Štěpánková, CSc.
Classification: Physics > Biophysics and Chemical Physics
Annotation -
Last update: G_F (07.01.2003)
Methods of magnetic resonance. Phenomenological description. Magnetic interaction of nuclei and electrons, quadrupolar interaction. High resolution NMR spectroscopy.
Aim of the course -
Last update: T_KFNT (11.04.2008)

Basic course on methods of magnetic resonance.

Course completion requirements -
Last update: Mgr. Václav Římal, Ph.D. (28.04.2020)

Oral exam

Literature - Czech
Last update: prof. RNDr. Helena Štěpánková, CSc. (14.02.2017)

Materiály k přednáškám

Prosser V. a kol., Experimentální metody biofyziky, Academia Praha 1989

Englich J., Sedlák B., Pilař J., Experimentální metody biofyziky II, skriptum MFF UK, Praha 1984

Hore P. J., Nuclear Magnetic Resonance, Oxford Sci. Publ. 2000 a pozdější vydání

Keeler J., Understanding NMR spectroscopy, Wiley 2011 (2nd edition)

Friebolin H., Basic One- and Two-Dimensional NMR Spectroscopy, Wiley 2010 (5th edition)

Macomber R. S., A Complete Introduction to Modern NMR Spectroscopy, J. Wiley & Sons, New York 1997

Sanders J. K. M., Hunter B. K., Modern NMR Spectroscopy - A Guide for Chemists, OUP Oxford 1993

Cavanagh et al., Protein NMR Spectroscopy, Principles and Practice, Elsevier 2006 (2nd edition)

Gunther H., NMR Spectroscopy (Basic Principles, Concepts and Applications in Chemistry), J. Wiley & Sons, 1995

Slichter C.P., Principles of Magnetic Resonance, rev. vyd. Springer Verlag, Berlin 1990

Abragam A., Principles of Nuclear Magnetism, Oxford Science Publications, Clarendon Press, 1986

Ernst R. R., Bodenhausen G., Wokaun A., Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Claredon Press, Oxford 1987

Loesche A., Kerninduktion, Deutscher Verlag d. Wissensch., Berlin 1957

Requirements to the exam -
Last update: Mgr. Václav Římal, Ph.D. (28.04.2020)

Questions during the oral exam are posed according to the syllabus and the lectures given. A solution of an exercise may be required during the exam, too.

Syllabus -
Last update: prof. RNDr. Helena Štěpánková, CSc. (14.02.2017)
1. Introduction.
Principle of magnetic resonance, basic characteristics. Theory of linear response. Electromagnetic moments of electron, of electron system and nucleus. Gyromagnetic particle in static and radiofrequency magnetic field. Paramagnetism of weak interacting particles. Spin-lattice and spin-spin relaxations.

2. Phenomenological description
Bloch equations. Steady state and pulse solutions. Linewidth, inhomogeneous line broadening. Free induction decay, spin echo. Measurement of relaxation rates.

3. Experimental technique.
Basic concept, excitation and detection of signal, data treatment, improvement of signal/noise ratio. Microvawe spectrometer, pulse spectrometer NMR.

4. NMR imaging.

5. NMR in condensed matter.
Dipol-dipol interaction, time averaging of interaction in liquids. Solution for solid state, simple configurations of spins, method of moments. Methods of high resolution in solids.

6. Magnetic interaction of electrons and nuclei.
Concept of spin Hamiltonian. Hyperfine interaction. Diamagnetic and paramagnetic shielding - chemical shift, indirect spin-spin coupling, consequences in spectra of solids and liquids.

7. NMR spectra of high resolution in liquids.
Spectral analysis. Approximation of equivalent nuclei, spectra of AkXl type. Decoupling, polarisation transfer, nuclear Overhauser effect. Study of dynamical processes. Influence of paramagnetic atoms.

8. 2D NMR spectroscopy.
Basic ideas. Resolved and correlated spectra.

9. Quadrupolar interaction.
Effect of quadrupolar interaction in NMR spectra of solids and liquids.

10. Electron paramagnetic (spin) resonance (EPR, ESR).
Spectra EPR (ESR). Spin hamiltonian. Hyperfine structure of spectra. Spectra of free radicals in solutions.

Charles University | Information system of Charles University |