|
|
|
||
Methods of magnetic resonance. Phenomenological description.
Magnetic interaction of nuclei and electrons, quadrupolar interaction.
High resolution NMR spectroscopy.
Last update: G_F (07.01.2003)
|
|
||
Basic course on methods of magnetic resonance. Last update: T_KFNT (11.04.2008)
|
|
||
Oral exam Last update: Římal Václav, Mgr., Ph.D. (28.04.2020)
|
|
||
Materiály k přednáškám
Prosser V. a kol., Experimentální metody biofyziky, Academia Praha 1989
Englich J., Sedlák B., Pilař J., Experimentální metody biofyziky II, skriptum MFF UK, Praha 1984
Hore P. J., Nuclear Magnetic Resonance, Oxford Sci. Publ. 2000 a pozdější vydání
Keeler J., Understanding NMR spectroscopy, Wiley 2011 (2nd edition)
Friebolin H., Basic One- and Two-Dimensional NMR Spectroscopy, Wiley 2010 (5th edition)
Macomber R. S., A Complete Introduction to Modern NMR Spectroscopy, J. Wiley & Sons, New York 1997
Sanders J. K. M., Hunter B. K., Modern NMR Spectroscopy - A Guide for Chemists, OUP Oxford 1993
Cavanagh et al., Protein NMR Spectroscopy, Principles and Practice, Elsevier 2006 (2nd edition)
Gunther H., NMR Spectroscopy (Basic Principles, Concepts and Applications in Chemistry), J. Wiley & Sons, 1995
Slichter C.P., Principles of Magnetic Resonance, rev. vyd. Springer Verlag, Berlin 1990
Abragam A., Principles of Nuclear Magnetism, Oxford Science Publications, Clarendon Press, 1986
Ernst R. R., Bodenhausen G., Wokaun A., Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Claredon Press, Oxford 1987
Loesche A., Kerninduktion, Deutscher Verlag d. Wissensch., Berlin 1957
Last update: Štěpánková Helena, prof. RNDr., CSc. (14.02.2017)
|
|
||
Questions during the oral exam are posed according to the syllabus and the lectures given. A solution of an exercise may be required during the exam, too. Last update: Římal Václav, Mgr., Ph.D. (28.04.2020)
|
|
||
1. Introduction.
Principle of magnetic resonance, basic characteristics. Theory of linear response. Electromagnetic moments of electron, of electron system and nucleus. Gyromagnetic particle in static and radiofrequency magnetic field. Paramagnetism of weak interacting particles. Spin-lattice and spin-spin relaxations. 2. Phenomenological description Bloch equations. Steady state and pulse solutions. Linewidth, inhomogeneous line broadening. Free induction decay, spin echo. Measurement of relaxation rates. 3. Experimental technique. Basic concept, excitation and detection of signal, data treatment, improvement of signal/noise ratio. Microvawe spectrometer, pulse spectrometer NMR. 4. NMR imaging. 5. NMR in condensed matter. Dipol-dipol interaction, time averaging of interaction in liquids. Solution for solid state, simple configurations of spins, method of moments. Methods of high resolution in solids. 6. Magnetic interaction of electrons and nuclei. Concept of spin Hamiltonian. Hyperfine interaction. Diamagnetic and paramagnetic shielding - chemical shift, indirect spin-spin coupling, consequences in spectra of solids and liquids. 7. NMR spectra of high resolution in liquids. Spectral analysis. Approximation of equivalent nuclei, spectra of AkXl type. Decoupling, polarisation transfer, nuclear Overhauser effect. Study of dynamical processes. Influence of paramagnetic atoms. 8. 2D NMR spectroscopy. Basic ideas. Resolved and correlated spectra. 9. Quadrupolar interaction. Effect of quadrupolar interaction in NMR spectra of solids and liquids. 10. Electron paramagnetic (spin) resonance (EPR, ESR). Spectra EPR (ESR). Spin hamiltonian. Hyperfine structure of spectra. Spectra of free radicals in solutions. Last update: Štěpánková Helena, prof. RNDr., CSc. (14.02.2017)
|