SubjectsSubjects(version: 941)
Course, academic year 2022/2023
   Login via CAS
Fundamentals of Astronomy and Astrophysics - NAST035
Title: Základy astronomie a astrofyziky
Guaranteed by: Astronomical Institute of Charles University (32-AUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: summer
E-Credits: 12
Hours per week, examination: summer s.:6/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Note: enabled for web enrollment
Guarantor: doc. Mgr. Josef Ďurech, Ph.D.
doc. RNDr. Martin Šolc, CSc.
doc. RNDr. Marek Wolf, CSc.
Classification: Physics > Astronomy and Astrophysics
Annotation -
Last update: T_AUUK (17.05.2012)
This comprehensive lecture offers introduction to the basic parts of astronomy and astrophysics on a level of practical information, theoretical studies are left to the more advanced lectures, e.g. Celestial Mechanics, Cosmic Plasma Physics, Relativistic Physics etc. M. Šolc and J.Ďurech are responsible for the part devoted to ephemeris astronomy and astrometry, M. Wolf and P. Harmanec for second part about observational techniques, methods and instruments, followed by characteristics of objects in the Universe. Teachers responsible for excercises and practicum are J. Ďurech and P. Zasche.
Aim of the course -
Last update: T_AUUK (17.05.2012)

This comprehensive lecture offers introduction to the basic parts of astronomy and astrophysics on a level of practical information, theoretical studies are left to the more advanced lectures, e.g. Celestial Mechanics, Cosmic Plasma Physics, Relativistic Physics etc.

Course completion requirements -
Last update: doc. RNDr. Marek Wolf, CSc. (07.06.2019)

Written and oral examination.

Literature -
Last update: T_AUUK (17.05.2012)

Astronomická příručka, Academia Praha 1992

Meeus J.: Astronomische Algorithmen, J.A.Barth Leipzig 1992 (2. vydání) (upravený překlad podle 1. vydání - Pokorný Z.: Astronomické algoritmy pro kalkulátory, Hvězdárna a planetárium hl.m. Prahy, 1988, skriptum)

Andrle P.: Základy nebeské mechaniky, Academia Praha 1971

Green R.M.: Spherical astronomy, Cambridge Univ. Press, 1985

Bradt H.: Astronomy Methods, Cambridge University Press, 2004

Howell S.B.: Handbok of CCD Astronomy, Cambridge Observing Handbooks, 2000

Scott Birney D., Gonzales G., Oesper D.: Observational Astronomy, Cambridge, 2006

Starck, Murtagh: Astronomical Image and Data Analysis, Springer 2002

Sterken, Manfroid: Astronomical Photometry, ASSL 175, Kluwer, Dordrecht 1992

Walker, G.: Astronomical Observations - An Optical Perspective, CUP 1987

Wilson, R.N.: Reflecting Telescope Optics I, II, A&A Library, Springer 1996

Bohm-Vitense E.: Stellar Astrophysics, Vol. 1, Basic Stellar Observations and Data, Vol. 3, Stellar Structure and Evolution, Cambridge 1989

Carroll B.W., Ostlie D.A.: Modern Astrophysics, Addison-Wesley, 196

Karttunen H. et al.: Fundamental Astronomy, Springer 2003

Teaching methods - Czech
Last update: T_AUUK (17.05.2012)

Přednáška s cvičením

Requirements to the exam -
Last update: doc. Mgr. Josef Ďurech, Ph.D. (20.06.2019)

according to syllabus

Syllabus -
Last update: T_AUUK (04.06.2013)

1. Coordinate systems in astronomy, spherical coordinates, transformation matrices.

2. Computing ephemerides: Solution of the undisturbed two-body problem (orbits = conic sections, Kepler's laws). Perturbations, restricted circular three-body problem.

3. Astrometry. Effects influencing coordinates - refraction, paralaxes, aberration, proper motion, precession, nutation, polar motion. Observing instruments for astrometry on observatories and satellites. Doppler effect.

4. Determining and distributing exact time. Sidereal time, equation of equinoxes. True and mean solar time, time equation. Atomic time, times UT1, UTC, TDT/TT, TDB, GPS. Julian date and its modifications.

5. Describing motions of the solar systém bodies: Planets, Moon, asteroids. Eclipses and occultations.

6. Calculation of orbital elements from observed positions: Laplace method (from initial conditions of position and velocity in cartesian coordinates), Gauss method (from 3 positions of an asteroid on the sky, from more positions), Olbers method (from 3 positions of a comet on parabolic orbit).

7. Units in astronomy and astrophysics, history of definitions. Units in photometry.

8. Electromagnetic radiation, black body radiation - laws.

9. Classical methods of stellar observations. Spectral classification, luminosity classes, n-dimensional classification, Hertzsprung-Russell diagram (HRD), colour diagram for globular and open clusters.

10. Evolution of stars in HRD. Classification of variable stars and their location in HRD. Pulsating variables - Cepheids, RR Lyr stars, mirids and irregular variables. Relation period-luminostity, determining distances using cepheids. Baade-Wesselink method. Flare stars - novae, supernovae. Light curves, spectra, radial velocities.

11. Eclipsing binaries, spectroscopic and visual double stars. Exoplanets.

12. Our Galaxy. Structure, kinematics and dynamics, rotation. Oort constants. Galactic core.

13. Galaxies and quasars. Hubble classification of galaxies. Active galaxies. BL Lac objects. Radio observation of galaxies, relativistic jets.

14. Optical systems of telescopes: Newton, Cassegrain, Gregory, Schmidt, Maksutov … Principles of mechanical construction of telescopes and how they are controlled. Active and adaptive optics. Telescopes in space - IUE, IRAS, HST, HIPPARCOS, Kepler …

15. Photometry. Detectors - human eye, photographic emulsion, photomultiplyer, CCD. Photometric systems. Ultraviolet and infrared photometry. Filters, systemUBVRI. Differential and absolute photometry. Extinction. Calibrations. Evaluation of photometric measurements.

16. Spectroscopy. Principles, prisma and grid spectrum. Dispersion curve. Spectrograph. Microphotometer. Reference spectrum. Non-conventional spectroscopy. Atlantes, tables of spectral lines. Methods of processing and evaluation of spectra. Radial velocities.

17. Radioastronomy. Antennes. Receivers. Point sources and extended sources, continuous and line spectra. Interferometry, apperture synthesis, VLBI. Radar equation.

18. Ultraviolet, X-ray and gamma astronomy.

19. Instruments in solar physics. Helioscopic eyepiece, coelostat, solar spectrograph, coronograph.

20. Properties and detection of polarized light. Stokes parameters. Polarimeter, Wollaston polarizator.

21. Detection of cosmic rays, meutrinos and gravitational waves. Project LIGO.

Practical exercises (0/2) comprise:

  • processing of observed data, eg. photometric or spectroscopic, in PC laboratory
  • computing examples to the first part of lessons (items 1 - 6 of syllabus)
  • introduction to the world of astronomical research institutions, organizations, observatories, scientific journals and periodicals, data systems and libraries etc.
  • work with catalogues, atlantes, circulars, yearbooks, archives etc., both in the printed and electronic forms (e.g. CDS Strassbourg, ADS/NASA)
Charles University | Information system of Charles University |