SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
Physics of Small Bodies in Solar System - NAST020
Title in English: Fyzika malých těles sluneční soustavy
Guaranteed by: Astronomical Institute of Charles University (32-AUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2015 to 2019
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Additional information:
Note: you can enroll for the course repeatedly
Guarantor: doc. Mgr. Miroslav Brož, Ph.D.
doc. RNDr. Martin Šolc, CSc.
Classification: Physics > Astronomy and Astrophysics
Annotation -
Last update: prof. RNDr. David Vokrouhlický, DrSc. (10.01.2019)
Basic information on small bodies in the Solar System, their origin and evolution. Protoplanetary disk, dust accretion, planetesimals and embryos, migration of planets, moons and tides, rings, asteroids, asteroid families, trans-Neptunian bodies, comets, dust, fireballs and meteors, meteorites, impacts and craters, volcanism.
Literature - Czech
Last update: prof. RNDr. David Vokrouhlický, DrSc. (10.01.2019)

Brož, M., Šolc, M.: Fyzika sluneční soustavy. Praha: Matfyzpress, 2013. ISBN 9788073782368.

Bertotti, B., Farinella, P., Vokrouhlický, D. Physics of the Solar System. Dordrecht: Kluwer Academic Publishers, 2003. ISBN 1402014287.

de Pater, I., Lissauer, J. J. Planetary Sciences. Cambridge: Cambridge University Press, 2001. ISBN 0521482194.

Bottke, W. F., Cellino, A., Paolicchi, P., Binzel, R. P. (eds.) Asteroids III. Tuscon: The University of Arizona Press, 2002. ISBN 0816522812.

Beatty, J. K., Petersen, C. C., Chaikin, A.: The New Solar System. Cambridge: Cambridge University Press, 1999. ISBN 0521369657.

Teaching methods - Czech
Last update: T_AUUK (31.03.2008)


Requirements to the exam - Czech
Last update: doc. Mgr. Miroslav Brož, Ph.D. (06.10.2017)

Zkouška je ústní, sestávající ze 3 obsáhlejších otázek.

Požadavky odpovídají syllabu, resp. základní učebnici Brož a Šolc (2011), v tom rozsahu, který byl prezentován na přednášce. Na přednášce je ovšem možné zařadit jednu nebo více nových pokročilejších kapitol. Známka se stanovuje dle správnosti nebo chybnosti odpovědí, včetně doplňujících otázek.

Syllabus -
Last update: prof. RNDr. David Vokrouhlický, DrSc. (10.01.2019)
3 Small bodies in the Solar System

3.1 Protoplanetary disk

3.1.1 Observations of Giant Molecular Clouds and proplyds

3.1.2 Gravitational collapse and Jeans criterion

3.1.3 Chemical composition and radiometric age of the disk

3.1.4 Structure of the protoplanetary disk

3.2 Dust accretion

3.2.1 Condensation of gas

3.2.2 Collisional growth of particles

3.2.3 Settlement towards the mid-plane of the disk

3.2.4 Spiralling due to gas drag

3.2.5 Turbulence

3.3 Planetesimals and embryos

3.3.1 Collisional growth of planetesimals up to planetary embryos

3.3.2 Gaseous and ice giant - gravitational collapse

3.3.3 Disappearance of the gas

3.3.4 Terrestrial planets - collisions of embryos

3.3.5 Differentiation

3.4 Migration of planets

3.4.1 Types of migration

3.4.2 Migration in the gas disk

3.4.3 Migration in the planetesimal disk and close encounters

3.4.4 Effects on primordial populations of small bodies

3.5 Moons and tides

3.5.1 Gravitational tidal force

3.5.2 Earth-Moon

3.5.3 Moon-Earth

3.5.4 Earth-Sun

3.5.5 Neptune-Triton

3.5.6 Mars-Phobos

3.5.7 Pluto-Charon, binary asteroids

3.5.8 Mercury-Sun, Venus-Sun

3.5.9 Jupiter, Io and Europa

3.6 Rings

3.6.1 Roche limit

3.6.2 Collisions in the ring

3.6.3 Gossamer rings of Jupiter

3.6.4 Main rings of Saturn

3.6.5 Uranus and Neptune rings

3.7 Asteroids

3.7.1 Nomenclature

3.7.2 Orbits

3.7.3 Light curves

3.7.4 Spectra and colours

3.7.5 Internal structure

3.7.6 Near-Earth objects

3.7.7 Binary asteroids

3.8 Asteroid families

3.8.1 Collision probability

3.8.2 Hierarchical clustering method

3.8.3 Size-frequency distribution

3.8.4 Velocity field after disruption

3.8.5 Gauss equations and changes of elements

3.8.6 Kepler differential rotation

3.8.7 Differential precession of nodes and pericentres

3.8.8 Yarkovsky effect and chaotic diffusion

3.8.9 The role of the YORP effect

3.8.10 Families in resonances

3.9 Trans-Neptunian bodies

3.9.1 Orbital structures

3.9.2 Physical characteristics

3.10 Comets

3.10.1 Nomenclature

3.10.2 Activity

3.10.3 Gas

3.10.4 Dust

3.10.5 Nucleus

3.10.6 Physical evolution of comets

3.10.7 Magnetosphere

3.10.8 Orbital classification of comets

3.10.9 Oort cloud and long-period comets

3.11 Dust

3.11.1 Zodiacal light and other observations of the dust

3.11.2 Asteroidal dust bands

3.11.3 Cometary dust trails

3.12 Fireballs and meteors

3.12.1 Atmospheric trajectory of the fireball

3.12.2 Deceleration and ablation

3.12.3 Meteor showers

3.12.4 Radar observations

3.12.5 Meteor spectra

3.13 Meteorites

3.13.1 Known falls and fields

3.13.2 Classification of meteorites

3.13.3 Isotopic ratios

3.13.4 Radiometric methods

3.13.5 Meteorites-asteroids associations

3.13.6 Transport of meteorites to the Earth

3.14 Impacts and craters

3.14.1 Morphology of Ries and Steinheim craters

3.14.2 Processes during an impact

3.14.3 Moldavites and other tectites

3.14.4 Rankine-Hugoniot equations

3.14.5 Age determination of surfaces using cratering

3.14.6 A relation to mass extinctions

3.15 Volcanism

3.15.1 Io

3.15.2 Triton

3.15.3 Europa

3.15.4 Enceladus

3.15.5 Differentiated asteroids

3.15.6 A comparison to planets

3.15.7 Classifications of eruptions

Charles University | Information system of Charles University |