|
|
|
||
Typed lambda calculi, Curry and Church variants. Extensions of type systems. Questions of type
checking, type derivation, and type inhabitation.
Last update: T_KTI (14.05.2015)
|
|
||
To learn the theory of lambda-calculus, combinatory logic and explainn connections to functional programming. Last update: Hric Jan, RNDr. (07.06.2019)
|
|
||
Oral exam on topics from lecture. Last update: Hric Jan, RNDr. (07.06.2019)
|
|
||
Henk Barendregt, Erik Barensen: Introduction to Lambda Calculus, 1998, rev. 2000, 53 s. http://www.cs.ru.nl/E.Barendsen/onderwijs/T3/materiaal/lambda.pdf
Hendrik Pieter Barendregt: The Lambda Calculus: Its Syntax and Semantics. Elsevier, Amstredam, 1984. Rev. ed. 1998, 621 s. 0-444-86748-1
Henk Barendregt, Wil Dekkers, Richard Statman: Lambda Calculus with Types. Cambridge University Press, Cambridge, 2010. 682 s. (rev. 2013, 978-0-521-76614-2)
J. Roger Hindley, Jonathan P. Seldin: Lambda-Calculus and Combinators, an Introduction. Cambridge University Press, Cambridge, 2. vyd., 2008, 360 s. 978-0-521-89885-0 (1986. 359 s. 0-521-31839-4)
Last update: T_KTI (14.05.2015)
|
|
||
Typed lambda calculus. Extension of lambda calculus language with object types. Curry and Church variants of type systems, their axiomatic systems. Böhm trees, head normal form, approximations.
Extensions of Curry type systems with polymorphism, intersection types and recursive types.
Hierarchy of typed lambda calculus theories, lambda cube. Questions of type checking, type derivation, and type inhabitation. Strong normalization. Pure type systems. Relations of type systems with logic.
Last update: T_KTI (14.05.2015)
|