SubjectsSubjects(version: 845)
Course, academic year 2019/2020
   Login via CAS
Optics - NAFY010
Title in English: Optika
Guaranteed by: Department of Condensed Matter Physics (32-KFKL)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: winter
E-Credits: 7
Hours per week, examination: winter s.:3/2 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Note: enabled for web enrollment
Guarantor: prof. RNDr. Petr Němec, Ph.D.
Annotation -
Last update: T_KFES (29.04.2016)
Basic course of optics with the emphasis on applied optics. Synopsis: Electromagnetic waves and their characteristics, diffraction phenomena, interference, geometrical optics, optical instruments, propagation of light in anisotropic media, wave-corpuscular dualism, interaction of electromagnetic radiation with matter, Fourier optics, principles of fiber optics, introduction to photonics.
Course completion requirements - Czech
Last update: prof. RNDr. Petr Němec, Ph.D. (06.10.2017)

Pro udělení zápočtu musí být úspěšně napsány 2 zápočtové písemky - 1. v polovině semestru a 2. na jeho konci. Každá z těchto písemek je uskutečněna v jeden řádný a dvou opravných termínech. Pokud nebudou úspěšně napsány obě tyto písemky, zápočet nebude udělen.

Zápočet je nutné získat před přihlášením na zkoušku.

Literature -
Last update: prof. RNDr. Petr Němec, Ph.D. (21.06.2018)

1. E. Hecht: Optics, Addison Wesley, 4th edition, San Francisco. 2002.

2. B. E. A. Saleh, M.C, Teich: Fundamentals of Photonics, John Wiley & sons, inc., New York, 1991.

3. M. Born, E. Wolf: Principles of Optics, Cambridge University Press, 7th extended edition, Cambridge 2003.

Requirements to the exam - Czech
Last update: prof. RNDr. Petr Němec, Ph.D. (06.10.2017)

Zkouška se sestává z písemné a ústní části. Písemná část předchází části ústní, její nesplnění znamená, že celá zkouška je hodnocena známkou nevyhověl(a) a ústní částí se již nepokračuje.

Písemná část bude sestávat z příkladů z témat, která korespondují se sylabem přednášky a současně odpovídají tomu co bylo procvičováno na cvičení.

Požadavky u ústní části zkoušky odpovídají sylabu předmětu.

Syllabus -
Last update: prof. RNDr. Petr Němec, Ph.D. (21.06.2018)

1. Electromagnetics waves.
Electromagnetic origin of light, spectral regions of electromagnetic waves and their utilization.

Speed of light measurement.

Maxwell equations, boundary conditions.

Propagation of electromagnetic wave in materials, wave equation. Plane and spherical electromagnetic waves, their properties.

Superposition principle.

Complex representation of monochromatic wave. Helmholtz equation.

Energy, intensity and radiation pressure of light. Polarization of light.

Reflection and refraction of plane waves on plane interface, Fresnel formulae. Dipole radiation.

2. Quasi-monochromatic electromagnetic waves.
Spectrum of electromagnetic wave, Fourier analysis.

Phase and group velocities.

Two-beam interference. Multiple-beam interference.

Young`s experiment. Antireflection coatings.

Optical interferometers.

Temporal and spatial coherence of light.

3. Diffraction phenomena.
Huygens-Fresnel`s principle. Babinet principle.

Fraunhofer diffraction. Optical diffraction grating.

Fresnel diffraction. Fresnel zones.

Fourier optics. Principles of holography.

4. Geometrical and instrumental optics.
Short-wave approximation, eiconal equation, light ray.

Huygens` principle, Lagrange-Poincaré integral invariant, Fermat`s principle.

Paraxial optics. Optical imaging by reflection and refraction on a spherical interface.

Imaging equations.

Mirrors, lenses, combinations of imaging.

Optical imaging instruments (magnifier glasses, microscope, telescope).

Aberrations (monochromatic and chromatic).

Spectral instruments, spectrometers (prism, grating) and interferometers.

Basics of radiometry and photometry.

5. Propagation of light in anisotropic media
Propagation of light in anisotropic media. Geometrical construction, indicatrix.

Application of birefringence: polarizers, and waveplates.

Anisotropy induced by strain, Kerr effect, Faraday effect and optical activity.

6. Wave-corpuscular dualism.
Spectrum of black-body radiation. Planck`s law, Wien’s law, Stefan-Boltzman law.

Photon. Photoelectric effect. Compton effect.

X-ray spectrum.

· De-Broglie waves.

7. Interaction of electromagnetic radiation with matter.
Propagation of light in conductive medium, complex index of refraction.

Dispersion. Relation between index of refraction and absorption coefficient. Lorentz theory of dispersion.

Elastic and non-elastic light scattering.

Principles of colors.

Absorption and emission. Stimulated and spontaneous transitions. Principles of laser.

8. Principles of fiber optics.
Guided light waves. Modes. Attenuation. Dispersion.

Types of optical fibers.

9. Introduction to photonics.
Sources and detectors of light.

Nonlinear optics. Nonlinear optical effects of 2nd and 3rd order.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html