Physical Chemistry - Modelling of Chemical Properties of Nanostructures and Biostructures - MSZCN052
Title: Fyzikální chemie - Modelování chemických vlastností nanostruktur a biostruktur
Czech title: Fyzikální chemie - Modelování chemických vlastností nanostruktur a biostruktur
Guaranteed by: Student Affairs Division (31-640)
Faculty: Faculty of Science
Actual: from 2021
Semester: summer
E-Credits: 0
Examination process: summer s.:
Hours per week, examination: summer s.:0/0, STEX [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Pre-requisite : MDIPL003
Opinion survey results   Examination dates   SS schedule   
Order Course title
Topic 1 (TO1)
1 Molecular Structure, Molecular Spectroscopy and Statistical Thermodynamics
Topic 2 (TO2) select 1
1 Quantum chemistry
2 Biophysical Chemistry II - Experimental Methods
Syllabus - Czech

Okruhy otázek ke státní zkoušce z fyzikální chemie jsou vytvořeny na základě syllabů povinných předmětů, a to ze společného základu, kde tvoří kurikulum předměty MC260P10 Fyzikální chemie III (Molekulová struktura a spektroskopie) a MC260P129 Fyzikální chemie IV (Statistická termodynamika a molekulové simulace), a dále z povinného kurikula pro jednotlivé specializace, konkrétně:

 ve specializaci Modelování chemických vlastností nanostruktur a biostruktur

MC260P59 Kvantová chemie nebo MC260P45 Biofyzikální chemie II - experimentální metody

 Při zkoušce si student vylosuje 2 okruhy otázek ze společného základu a 1 ze své specializace.

 Společný základ

 1. Teoretické základy spektroskopie. Časově závislá poruchová teorie, emise a absorpce záření, spontánní a stimulovaná emise, výběrová pravidla, Bornova-Oppenheimerova aproximace, tvar spektrálnich čar

 2. Rotačně-vibrační spektra. Vibrace a rotace dvouatomových a víceatomových molekul. Ramanův rozptyl

 3. Elektronová struktura a elektronová spektra. UV/Vis spektra, fluorescence, fosforescence, ultrafialová a rentgenová fotoelektronová spektroskopie, elektrické a magnetické vlastnosti látek.

 4. Magnetická rezonance. Interakce molekul s magnetickym polem, magnetický hamiltonián, spin-spinové štěpení, spinová relaxace. Spektroskopie NMR a EPR

 5. Základní pojmy statistické termodynamiky.  Definice souboru, partiční funkce v různých souborech, statistická váha, charakteristická funkce souboru, postuláty statistické termodynamiky, pravděpodobnost pozorování daného stavu při různé teplotě, Boltzmannův faktor a degenerace, Boseho-Einsteinova, Fermiho-Diracova a Boltzmannova statistika

 6. Termodynamické funkce ideálního plynu. Definice ideálního plynu, translační, rotační, vibrační, elektronové a jaderné příspěvky, mono- di- a víceatomový ideální plyn, příspěvky k vnitřní energii a tepelné kapacitě. Chemická rovnováha v plynné fázi, chemický potenciál a příspěvky k chemickému potenciálu z partiční funkce ideálního plynu

 7. Neideální systémy interagujících částic.  Konfigurační integrál, viriální rozvoj, párová korelační funkce, teorém korespondujících stavů, Isingův model, fázové přechody - kritická teplota, aproximace středního pole, roztoky elektrolytů, stíněný elektrostatický potenciál, Debeyova délka, aktivitní koeficient z Debye-Hückelovy teorie

 8. Molekulové simulace – metody MD a MC. Statistické vzorkování konfiguračního a fázového prostoru, preferenční vzorkování, Metropolisovo kritérium, integrace pohybových rovnic v MD, ergoridicita - časový vs. soborový průměr,  modely intra- a inter-molekulárních interakcí, periodické okrajové podmínky, inicializace, ekvilibrace, zpracování korelovaných dat

   Specializace: Modelování chemických vlastností nanostruktur a biostruktur

 Kvantová chemie

 1. Úvod do kvantové chemie. Přehled kvantově-chemických metod (HF, DFT, semi-empirické metody, Hückelova metoda), komutátory, hermitovské operátory, vlnová funkce multielektronového systému (symetrie vlnové funkce, Slaterův determinant), lineární variační teorém, lineární kombinace atomových orbitalů, sekulární rovnice

 2. Hartree-Fockova metoda. Model nezávislých elektronů, Slaterova-Condonova pravidla, Hartree-Fockovy rovnice, Fockův operátor, Koopmansův teorém, báze atomových orbitalů (Roothaanova-Hallova rovnice, druhy bázových funkcí, limita úplné báze, superpoziční chyba)

 3. Korelační metody. Korelační energie, základy metody konfigurační interakce a metody spřažených klastrů (rozvoj vlnové funkce, typické aproximace, self-konzistence), princip multi-referenčních metod, principy obecné a Møller-Plessetovy poruchové teorie

 4. Teorie funkcionálu hustoty. Vlastnosti elektronové hustoty, Hohenbergovy-Kohnovy teorémy, “orbital-free” teorie (Thomasův-Fermiho model, funkcionál a jeho variace), Kohnův-Shamův přístup, Jákobův žebřík aproximací korelačně-výměnného funkcionálu

 Biofyzikální chemie II

 1. NMR spektroskopie a její použití při studiu struktury proteinů. Původ NMR signálu, princip 2D NMR, spektra COSY a NOESY, obecný princip určení 3D struktury proteinu pomocí NMR

 2. Proteinová krystalografie. Krystalová mřížka a její popis, teorie difrakce (atomový rozptylový faktor, strukturní faktor Laueho podmínky, Braggův zákon, fázový problém a metody řešení fázového problému). Metody krystalizace proteinů.

 3. Rozptylové a mikroskopické metody. Maloúhlový rozptyl rentgenového záření (SAXS), statický a dynamický rozptyl světla, kryoelektronová mikroskopie (cryoEM) a jejich použití při studiu biopolymerů

 4. Analytická ultracentrifugace a kalorimetrie. Metoda sedimentační rychlosti, Svedbergova a Lammova rovnice, metoda sedimentační rovnováhy, využití ultracentrifugace při studiu biopolymerů.  Mikrokalorimetrie, princip metod ITC a DSC a jejich využití při studiu biopolymerů.

 

 

 

 

 

Last update: Rubešová Jana, RNDr., Ph.D. (07.06.2022)