SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Basics of seismic wave theory - MG452P81
Title: Základy teorie seismických vln
Czech title: Základy teorie seismických vln
Guaranteed by: Institute of Hydrogeology, Engineering Geology and Applied Geophysics (31-450)
Faculty: Faculty of Science
Actual: from 2020
Semester: both
E-Credits: 3
Hours per week, examination: 2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Explanation: Výuka probíhá s ohledem na situaci dle nařízení hyg. stanice hl.m. Prahy a MŠMT
Note: enabled for web enrollment
you can enroll for the course in winter and in summer semester
Guarantor: prof. RNDr. František Gallovič, Ph.D.
Teacher(s): prof. RNDr. František Gallovič, Ph.D.
Annotation -
Types of seismic waves. Body waves in the Earth’s interior. Ray methods based on variational principles.
Methods based on the equations of continuum mechanics. Seismic surface waves.
Last update: Sedláčková Zdeňka, Mgr. (14.05.2012)
Literature -

K. Aki, P. G. Richards: Quantitative Seismology, Univ. Sci. Books, Sausalito, Calif., 2001.

J. Brokešová: Asymptotic Ray Method in Seismology. A Tutorial. Matfyz Press, Pratur, 2006.

V. Červený: Seismic Ray Theory. Cambridge University Press, 2001.

Last update: Sedláčková Zdeňka, Mgr. (14.05.2012)
Requirements to the exam - Czech

Zkouška formou ústní.

Last update: Sedláčková Zdeňka, Mgr. (15.05.2012)
Syllabus -

Outlook

Observation of seismic waves

Structure of the seismogram. Body waves and surface waves. Types of seismic waves propagating in the Earth’s interior. Travel-time curves, dispersion curves.

Simple ray theory based on Fermat’s Principle

Fermat’s Principle. Euler’s equations for the extremal. Snell’s law. Seismic rays and travel times in a vertically inhomogeneous medium. Seismic rays and travel times in a spherically symmetric medium. The Wiechert-Herglotz equation.

Elastodynamic equation

Separation of the elastodynamic equation in a homogeneous isotropic medium. Introduction of potentials. Wave equations.

Special solutions of the elastodynamic equation

Plane waves in a homogeneous isotropic medium and in a homogeneous anisotropic medium. Reflection and transmission of plane waves at a plane interface. Total reflection. Stokes’ solution of the elastodynamic equation in a homogeneous isotropic medium. Weyl’s integral. Head waves.

Seismic surface waves

Rayleigh waves on a homogeneous isotropic half-space. Love waves in a layer on a half-space. Matrix formulation of the problems for layered media.

Last update: Sedláčková Zdeňka, Mgr. (14.05.2012)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html