SubjectsSubjects(version: 901)
Course, academic year 2022/2023
  
Quantum Chemistry - MC260P59
Title: Kvantová chemie
Czech title: Kvantová chemie
Guaranteed by: Department of Physical and Macromolecular Chemistry (31-260)
Faculty: Faculty of Science
Actual: from 2020
Semester: winter
E-Credits: 3
Examination process: winter s.:
Hours per week, examination: winter s.:2/1 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Is provided by: MC260P82
Additional information: https://www.natur.cuni.cz/chemie/fyzchem/nachtig/vyuka
Note: enabled for web enrollment
Guarantor: RNDr. Lukáš Grajciar, Ph.D.
Teacher(s): RNDr. Lukáš Grajciar, Ph.D.
Christopher James Heard, Ph.D.
Incompatibility : MC260P82
Is incompatible with: MC260P82
Opinion survey results   Examination dates   Schedule   
Annotation -
Last update: prof. RNDr. Petr Nachtigall, Ph.D. (15.02.2019)
Quantum Chemistry

The aim of the course is to acquaint students with the fundamental concepts, models and methods of quantum chemistry at the level which would make possible to appreciate most research papers dealing with applications of electronic structure theory. Course is devided into three parts: (i) approximations in quantum chemistry, (ii) methods based on the wave-function theory, and (iii) methods based on the density functional theory.
Course is in English.
Literature -
Last update: RNDr. Lukáš Grajciar, Ph.D. (24.10.2019)

A. Szabo, S. Ostlund: Modern Quantum Chemistry. McGraw-Hill, 1989.

W. Koch, M. Holthausen: A Chemist Guide to Densitry Functional Theory, Wiley/VCH 2001.

J. Fišer: Introduction to Quantum Chemistry (in Czech). Academia, 1983.

P. Čársky, M. Urban: Ab initio Calculations in Chemistry (in Czech). SNTL, 1985.

I. N. Levine: Quantum Chemsitry, Pearson, 2014.

(Advanced) R. G. Parr, W. Yang: Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1989.

(Advanced) L. Piela: Ideas of Quantum Chemistry, Elsevier, 2013.

Requirements to the exam -
Last update: RNDr. Lukáš Grajciar, Ph.D. (24.10.2019)

To qualify for examination student must obtained at least 50% from both tests (midterm and final). Examination is oral and there are three questions - one from each part of the course.

Syllabus -
Last update: prof. RNDr. Petr Nachtigall, Ph.D. (15.02.2019)

Adiabatic and Born-Oppeheimer approximation. Variation method. Stationary perturbation theory. Hellmann-Feynman theorem. Independent particle model. Slater-Condon rules. Hartree-Fock-Roothaan equations. Population analysis. Angular momentum. Spin eigenfunctions. Correlation energy. Ab initio calculations. Atomic basis sets. Configuration interaction, coupled clusters, Moller-Plesset perturbation theory. Multi-reference methods. Density functional theory. Pseudopotentials. Relativistic effects. Stationary points on potential energy surfaces.

(i) Základní aproximace v kvantové chemii

Adiabatická a Bornova-Oppenheimerova aproximace.

Variační metoda.

Stacionární poruchová teorie.

Model nezávislých částic.

Moment hybnosti.

Spinové vlastní funkce.

Stacionární body na hyperplochách potenciální energie.

(ii) Metody založené na vlnové funkci

Hartreeho-Fockova metoda.

Báze atomových orbitalů.

MO LCAO, Hartreeho-Fockovy-Roothaanovy rovnice.

Populační analýza.

Slaterova-Condonova pravidla.

Korelační energie.

Výpočty ab initio.

Konfigurační interakce.

Moellerova-Plessetova poruchová teorie.

Spřažené klastry.

Metoda MCSCF a multireferenční metody

(iii) Metody založené na funkcionálu hustoty

Vlastnosti elektronové hustoty.

Teorie funkcionálu hustoty.

Hohenbergovy-Kohnovy teorémy.

Kohnovy-Shamovy rovnice.

Výměnné a korelační funkcionály.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html