Calibration in instrumental methods. Electrochemical methods: methods based on measuring of potential (equilibrium potentiometry, potentiometric titrations), current (voltammetry and polarography, coulometry, electrogravimetry) and conductivity (conductometry and dielectrometry). Optical methods: methods without exchange of energy (refractometry,
polarimetry, nephelometry); absorption spectral methods (molecular absorption and atomic absorption spectroscopy); emission spectral methods (molecular fluorescence spectroscopy, atomic emission spectroscopy); analytical methods in flowing liquids with optical detection; spectral methods for determination of pollutants in the air. Chromatographic methods: column chromatography (gas and liquid), planar (thin-layer) chromatography. Electromigration methods.
In the scope of the Seminar training in basic calculations used in analytical chemistry (gravimetry; precipitation, complexation, acid-base and redox equilibria) is realized.
Learning Outcomes:
Upon completion of the course, the student will:
1. Explain electrodes, electrochemical cell, transport mechanisms, polarization curve. Describe electrodes: first and second species, membrane electrodes, redox electrodes. Describes the electrochemical cell: indicating (working) and reference electrodes, galvanic cell, electrolyzer, electrode polarization (concentration and activation), transport mechanisms in electrochemical cells (diffusion, convection, migration), polarization curve, depolarizers.
2. Explain equilibrium potentiometry. Defines equilibrium potentiometry direct: pH measurement (glass electrode, pH meter calibration, alkaline and acid error), ion selective electrodes (with glass, crystalline and liquid membrane, selectivity coefficient), gas potentiometric detectors. Defines indirect potentiometry: indication of the end point in volumetric determinations, selection of electrodes.
3. Explain polarography, voltammetry, amperometry. Define voltammetry and polarography: basic circuitry of electrodes in a cell, potentiostat, working electrodes used (solid materials, mercury), voltammetric wave (half-wave potential, limiting current). Explain the use of voltammetry and polarography: direct analysis methods, stripping analysis. Defines amperometry: detection of substances in flowing media, Clark sensor.
4. Explain electrogravimetry, coulometry, conductometry; absolute and comparative analytical methods. Define electrogravimetry and coulometry: performance at constant potential and constant current (coulometric titrations). Defines conductometry: conductivity vessel (two and four electrode), conductivity detectors. Explain the general concepts: absolute and comparative analytical methods.
5. Explain refractometry, polarimetry, nephelometry, presents a general introduction to spectral methods. Define optical methods in which there is no energy exchange when radiation interacts with matter: refractometry, polarimetry, nephelometry. Defines optical methods in which energy exchange occurs when radiation interacts with matter – general introduction to spectral methods: energy of radiation and nature of interaction, absorption (excitation) and emission (relaxation) of energy by atoms and molecules (line and band spectra).
6. Explain absorption spectral methods, introduces calibration methods. Define radiation absorption and related phenomena, Lambert-Beer law, molecular absorption spectrometry, atomic absorption spectrometry. Explain the general concepts: calibration methods – calibration curve, standard addition method.
7. Explain emission spectral methods, present evaluation of analysis results. Explain the method of excitation (electromagnetic radiation – fluorescence spectrometry, thermal energy, electrons), molecular emission spectrometry, atomic emission spectrometry. Explain the general concepts: evaluation of analytical results – error, deviation, accuracy, precision, range, outliers.
8. Explain the basic instrumentation for optical methods. Describe the radiation source, monochromator, sample cell, radiation detector, signal processing and display. Describe the block diagram of absorption and emission (fluorescence) spectral instruments, single and dual channel arrangements. Describes automatic analyzers with optical detection: FIA, CFA.
9. Explain chromatography – separation principles, efficiency, zone expansion, resolution. Defines planar and column chromatography – general basis. Describe the chromatogram: basic parameters (dead time, retention time, retention ratio, peak width, peak height, peak area, peak symmetry). Describes the instrumentation: mobile phase source, dispensing equipment, column, detector, evaluation equipment. Explain the efficiency and optimization of the separation process: column efficiency, resolution, optimization – van Deemter equation.
10. Explain gas chromatography. Describe the experimental setup and performance of gas chromatography: mobile phase, columns, stationary phase, detectors, isothermal elution, temperature program. Explain the use of chromatographic methods: qualitative analysis – separation and identification of compounds, combined methods (GC-MS, GC-IR), quantitative analysis (internal standard, internal standardisation).
11. Explain liquid chromatography (column and planar). Describe the experimental set-up and performance of liquid chromatography: column chromatography – mobile phase, columns, stationary phase, detectors, isocratic and gradient elution; planar chromatography – descending, ascending, two-dimensional elution, retardation factor. Describe the use of chromatographic methods: qualitative analysis – separation and identification of compounds, combined methods (LC-MS), quantitative analysis (internal standard). Explain supercritical fluid chromatography.
12. Explain electromigration methods, explain how to express the result of the analysis. Describe the separation of charged substances in an electric field (migration), zonal and capillary electrophoresis, separation of proteins and amino acids (isoelectric point and choice of pH of the separation medium). Explain the separation modes: capillary zone electrophoresis, micellar electrokinetic chromatography, isotachophoresis, capillary gel electrophoresis. Explain the general concepts: how to express the result of an analysis – arithmetic mean, median, standard deviation, confidence interval, valid digits.
Last update: Vyskočil Vlastimil, prof. RNDr., Ph.D. (27.02.2024)
Kalibrace v instrumentálních metodách. Elektroanalytické metody: metody založené na měření potenciálu (rovnovážná potenciometrie, potenciometrické titrace), proudu (voltametrie a polarografie, coulometrie, elektrogravimetrie) a vodivosti (konduktometrie a dielektrimetrie). Optické metody: metody bez výměny energie mezi látkou a zářením (refraktometrie, polarimetrie, nefelometrie); absorpční spektrální metody (molekulová a atomová absorpční spektrometrie); emisní spektrální metody (molekulová fluorescenční spektrometrie, atomová emisní spektrometrie). Průtokové analytické metody s optickou detekcí. Spektrální metody pro stanovení plynných polutantů ve vzduchu. Chromatografické metody: kolonová chromatografie (plynová a kapalinová), planární chromatografie. Elektromigrační metody.
V rámci cvičení budou procvičovány základní výpočty v analytické chemii (gravimetrie; srážecí, komplexotvorné, acidobazické a redoxní rovnováhy).
Výstupy z učení:
Po absolvování předmětu student/ka:
1. Vysvětlí elektrody, elektrochemický článek, transportní mechanismy, polarizační křivku. Popíše elektrody: prvního a druhého druhu, membránové elektrody, redoxní elektrody. Popíše elektrochemický článek: elektrody indikační (pracovní) a referentní, galvanický článek, elektrolyzér, polarizaci elektrod (koncentrační a aktivační), transportní mechanismy v elektrochemických celách (difúze, konvekce, migrace), polarizační křivku, depolarizátory.
2. Vysvětlí rovnovážnou potenciometrii. Definuje rovnovážnou potenciometrii přímou: měření pH (skleněná elektroda, kalibrace pH metrů, alkalická a kyselá chyba), iontově selektivní elektrody (se skleněnou, krystalickou a kapalnou membránou, koeficient selektivity), plynové potenciometrické detektory. Definuje potenciometrii nepřímou: indikace konečného bodu při odměrných stanoveních, výběr elektrod.
3. Vysvětlí polarografii, voltametrii, ampérometrii. Definuje voltametrii a polarografii: základní zapojení elektrod v cele, potenciostat, používané pracovní elektrody (z tuhých materiálů, rtuťové), voltametrickou vlnu (půlvlnový potenciál, limitní proud). Objasní použití voltametrie a polarografie: metody přímé analýzy, rozpouštěcí (stripping) analýza. Definuje ampérometrii: detekci látek v proudících médiích, Clarkovo čidlo.
4. Vysvětlí elektrogravimetrii, coulometrii, konduktometrii; analytické metody absolutní a komparativní. Definuje elektrogravimetrii a coulometrii: provedení za konstantního potenciálu a konstantního proudu (coulometrické titrace). Definuje konduktometrii: vodivostní nádobka (dvou a čtyřelektrodová), vodivostní detektory. Vysvětlí obecné pojmy: analytické metody absolutní a komparativní.
5. Vysvětlí refraktometrii, polarimetrii, nefelometrii, představí obecný úvod do spektrálních metod. Definuje optické metody, u nichž při interakci záření s látkou nedochází k výměně energie: refraktometrii, polarimetrii, nefelometrii. Definuje optické metody, u nichž při interakci záření s látkou dochází k výměně energie – obecný úvod do spektrálních metod: energii záření a povahu interakce, absorpci (excitaci) a emisi (relaxaci) energie atomy a molekulami (spektrum čárové a pásové).
6. Vysvětlí absorpční spektrální metody, představí kalibrační metody. Definuje absorpci záření a související jevy, Lambertův-Beerův zákon, molekulovou absorpční spektrometrii, atomovou absorpční spektrometrii. Objasní obecné pojmy: kalibrační metody – kalibrační křivka, metoda standardního přídavku.
7. Vysvětlí emisní spektrální metody, představí hodnocení výsledků analýzy. Objasní způsob excitace (elektromagnetickým zářením – fluorescenční spektrometrie, tepelnou energií, elektrony), molekulovou emisní spektrometrii, atomovou emisní spektrometrii. Vysvětlí obecné pojmy: hodnocení výsledků analýzy – chyba, odchylka, správnost, přesnost, rozpětí, odlehlé výsledky.
8. Vysvětlí základní instrumentaci u optických metod. Popíše zdroj záření, monochromátor, kyvetu se vzorkem, detektor záření, zpracování a zobrazení signálu. Popíše blokové schéma absorpčních a emisních (fluorescenčních) spektrálních přístrojů, jednokanálové a dvoukanálové uspořádání. Popíše automatické analyzátory s optickou detekcí: FIA, CFA.
9. Vysvětlí chromatografii – separační principy, účinnost, rozšiřování zón, rozlišení. Definuje planární a kolonovou chromatografii – obecný základ. Popíše chromatogram: základní parametry (mrtvý čas, retenční čas, retenční poměr, šířka píku, výška píku, plocha píku, symetrie píku). Popíše instrumentaci: zdroj mobilní fáze, dávkovací zařízení, kolonu, detektor, vyhodnocovací zařízení. Vysvětlí účinnost a optimalizaci separačního procesu: účinnost kolony, rozlišení, optimalizaci – van Deemterovu rovnici.
10. Vysvětlí plynovou chromatografii. Popíše experimentální uspořádání a provádění plynové chromatografie: mobilní fáze, kolony, stacionární fáze, detektory, izotermickou eluci, teplotní program. Vysvětlí použití chromatografických metod: kvalitativní analýzu – separaci a identifikaci látek, kombinované metody (GC-MS, GC-IR), kvantitativní analýzu (vnitřní standard, vnitřní normalizace).
11. Vysvětlí kapalinovou chromatografii (kolonovou i planární). Popíše experimentální uspořádání a provádění kapalinové chromatografie: kolonové chromatografie – mobilní fáze, kolony, stacionární fáze, detektory, izokratickou a gradientovou eluci; planární chromatografie – sestupnou, vzestupnou, dvoudimenzionální eluci, retardační faktor. Popíše použití chromatografických metod: kvalitativní analýzu – separaci a identifikaci látek, kombinované metody (LC-MS), kvantitativní analýzu (vnitřní standard). Vysvětlí superkritickou fluidní chromatografii.
12. Vysvětlí elektromigrační metody, vysvětlí způsoby vyjádření výsledku analýzy. Popíše dělení nabitých látek v elektrickém poli (migraci), zonální a kapilární elektroforézu, separace bílkovin a aminokyselin (izoelektrický bod a volbu pH separačního média). Vysvětlí separační módy: kapilární zónovou elektroforézu, micelární elektrokinetickou chromatografii, izotachoforézu, kapilární gelovou elektroforézu. Vysvětlí obecné pojmy: způsob vyjádření výsledku analýzy – aritmetický průměr, medián, směrodatnou odchylku, interval spolehlivosti, platné číslice.
Last update: Vyskočil Vlastimil, prof. RNDr., Ph.D. (27.02.2024)
Literature -
1. F. Opekar a kol.: Základní analytická chemie, skripta, UK, Karolinum, Praha 2002 a 2010. 2. P. Coufal a kol.: Seminář z analytické chemie, skripta, UK, Karolinum, Praha 2001. 3. D. A. Skoog, D. M. West a F. J. Holler: Fundamentals of Analytical Chemistry, 6. Edition, Saunders College Publishing, 1992. 4. Kolektiv: Analytická chemie 2, SNTL Praha, 1980.
Last update: Nesměrák Karel, doc. RNDr., Ph.D. (28.10.2019)
1. F. Opekar a kol.: Základní analytická chemie, skripta, UK, Karolinum, Praha 2002 a 2010. 2. P. Coufal a kol.: Seminář z analytické chemie, skripta, UK, Karolinum, Praha 2001. 3. D. A. Skoog, D. M. West a F. J. Holler: Fundamentals of Analytical Chemistry, 6. Edition, Saunders College Publishing, 1992. 4. Kolektiv: Analytická chemie 2, SNTL Praha, 1980.
Last update: Kotek Jan, prof. RNDr., Ph.D. (20.03.2018)
Requirements to the exam -
To pass a credit in analytical chemistry is required to pass both a written credit test and an oral exam (with a written preparation). Requirements for the written tests are given by the extent of the lectures/exercises.
Last update: Vyskočil Vlastimil, prof. RNDr., Ph.D. (13.09.2022)
Přednáška je zakončena ústní zkouškou (s písemnou přípravou) s otázkami na problematiku přednášenou v obou semestrech. Povinný seminář k přednášce je zakončen písemným zápočtovým testem.
Detailní informace a studijní materiály k semináři jsou v Moodle https://dlcv.cuni.cz/course/view.php?id=310
Last update: Vyskočil Vlastimil, prof. RNDr., Ph.D. (13.09.2022)
Syllabus -
Continuation of the lecture C230P01 - Analytical chemistry I.
12. Absolute and comparative analytical methods. Calibration methods (calibration curve method, standard addition method).
13. Basic statistical evaluation of data (accuracy and precision, mean, standard deviation, confidence interval, valid numbers)
14. Electroanalytical methods based on measurement of potential. Equilibrium potentiometry (electrochemical cell, electrodes). Direct potentiometry (measurement of pH, determination of other ions using ISE, selectivity coefficient, gas sensors based on ISE). Indirect potentiometry, potentiometric titrations.
15. Electroanalytical methods based on measurement of current I. Voltammetry and polarography (polarization curve, scheme of electrochemical cell, electrodes, dc, ac and pulse voltammetry. Voltammetric stripping analysys. Amperometry (amperometric detectors).
16. Electroanalytical methods based on measurement of current II. Electrogravimetry and coulometry (potentiostatic and galvanostatic methods, coulometric titrations, colometric analyzers). Conductometry (conductometric analyzers and detectors).
17. Optical methods (the nature of absorption and emission of radiation by atoms and molecules). Atomic and molecular absorption and emission/fluorescence spectra, their utilization in analytical chemistry. Molecular absorption spectrometry in uv/vis range of radiation. Atomic absorption spectrometry.
19. Chromatographic methods (fundamentals, classification of chromatographic methods).
Planar chromatography. Column chromatography (general aspects, parameters obtained from chromatogram, separation efficiency, resolution, optimization of separation process). Application of chromatographic methods in quantitative and qualitative analysis (hyphenated methods, GC-MS, LC-MS).
20. Gas chromatography (columns, detectors). Liquid chromatography (selection of mobile phase, classification of LC based on difference in stationary phase - partition, affinity, size-exclusion, ion-exchange chromatography).
21. Electromigration methods. Separation in electric field (zone and capillary electrophoresis). Example of separation - aminoacids and peptides.
Seminar's Syllabus:
1. Acid-base equilibria and pH calculations. Acid-base titrations and stochiometry.
2. Redox equilibria, titrations and stochiometry.
3. Basic principles and calculations in separation methods.
4. Statistics of experimental analytical results.
Last update: FORSTOVA/NATUR.CUNI.CZ (05.04.2013)
* Pokračování přednášky Analytická chemie I (a). 13) Analytické metody absolutní a komparativní. Kalibrační metody: kalibrační křivka, metoda standardního přídavku. Hodnocení výsledků analýzy: chyba, odchylka, správnost, přesnost, rozpětí, odlehlé výsledky. Způsob vyjádření výsledku analýzy: aritmetický průměr, medián, směrodatná odchylka, interval spolehlivosti, platné číslice. 14) Úvod do elektroanalytických metod. Elektrody: prvního a druhého druhu, membránové elektrody, redox elektrody. Elektrochemický článek: elektrody indikační (pracovní) a referentní, galvanický článek, elektrolyzér, polarizace elektrod (koncentrační a aktivační), transportní mechanismy v elektrochemických celách (difúze, konvekce, migrace), polarizační křivka, depolarizátory. 15) Elektroanalytické metody založené na měření napětí. Rovnovážná potenciometrie přímá: měření pH (skleněná elektroda, kalibrace pH metrů, alkalická a kyselá chyba), iontově selektivní elektrody (se skleněnou, krystalickou a kapalnou membránou, koeficient selektivity), plynové potenciometrické detektory. Potenciometrie nepřímá: indikace konečného bodu při odměrných stanoveních, výběr elektrod. 16) Elektroanalytické metody založené na měření proudu. Voltametrie a polarografie: základní zapojení elektrod v cele, potenciostat, používané pracovní elektrody (z tuhých materiálů, rtuťové), voltametrická vlna (půlvlnový potenciál, limitní proud). Použití voltametrie a polarografie: metody přímé analýzy, rozpouštěcí (stripping) analýza, ampérometrie (detekce látek v proudících médiích, Clarkovo čidlo). Elektrogravimetrie a coulometrie: provedení za konstantního potenciálu a konstantního proudu (coulometrické titrace). Konduktometrie: vodivostní nádobka (dvou a čtyřelektrodová), vodivostní detektory. 17) Optické metody. Při interakci záření s látkou nedochází k výměně energie: refraktometrie, polarimetrie, nefelometrie. Při interakci záření s látkou dochází k výměně energie - spektrální metody: energie záření a povaha interakce, absorpce (excitace) a emise (relaxace) energie atomy a molekulami (spektrum čárové a pásové). 18) Analytické využití spektrálních metod. Absorpční spektrální metody: Lambert-Beerův zákon, molekulová absorpční spektrometrie, atomová absorpční spektrometrie. Emisní spektrální metody: způsob excitace (elmag. zářením - fluorescenční spektrometrie, tepelnou energií, elektrony), molekulová emisní spektrometrie, atomová emisní spektrometrie. Základní instrumentace: zdroj záření, monochromátor, kyveta se vzorkem, detektor záření, zpracování a zobrazení signálu. Blokové schema absorpčních a emisních (fluorescenčních) spektrálních přístrojů, jednokanálové a dvoukanálové uspořádání. Automatické analyzátory s optickou detekcí: FIA, CFA. 19) Chromatografické metody. Planární chromatografie: chromatografie tenkovrstvá, na papíře, eluce sestupná, vzestupná, dvoudimensionální, retardační faktor. Kolonová chromatografie, obecný základ. Chromatogram: základní parametry (mrtvý čas, retenční čas, retenční poměr, šířka píku, výška píku, plocha píku, symetrie píku). Instrumentace: zdroj mobilní fáze, dávkovací zařízení, kolona, detektor, vyhodnocovací zařízení. Účinnost a optimalizace separačního procesu: účinnost kolony, rozlišení, optimalizace - van Deemterova rovnice. 20) Charakteristické rozdíly v experimentálním uspořádání a provádění plynové a kapalinové chromatografie: mobilní fáze (inertní plyn, směs rozpouštědel), kolony (plněné, kapilární), stacionární fáze (nepolární, polární, chirální, kapalné, tuhý adsorbent, molek. síto, iontoměnič, biologicky aktivní látka), detektory (FID, TCD, ECD, detektory optické, elektrochemické). Použití chromatografických metod: kvalitativní analýza - separace a identifikace látek, kombinované metody (GC-MS, GC-ič, LC-MS), kvantitativní analýza (vnitřní standard). 21) Elektromigrační metody: dělení nabitých látek v elektrickém poli (migrace), zonální a kapilární elektroforéza, separace bílkovin a aminokyselin (isoelektrický bod a volba pH separačního média). Isotachoforéza.
* Sylabus cvičení: 1. Acidobazické rovnováhy a výpočty pH. Acidobazické titrace a stechiometrie. 2. Redoxní rovnováhy. Redoxní titrace a stechiometrie. 3. Základní vztahy a výpočty v separačních metodách. 4. Statistické zpracování a hodnocení analytických výsledků.
Last update: Kotek Jan, prof. RNDr., Ph.D. (20.03.2018)