SubjectsSubjects(version: 978)
Course, academic year 2025/2026
   Login via CAS
Principles of Genetics - MB140P16
Title: Základy genetiky
Czech title: Základy genetiky
Guaranteed by: Department of Genetics and Microbiology (31-140)
Faculty: Faculty of Science
Actual: from 2025
Semester: winter
E-Credits: 3
Examination process: winter s.:
Hours per week, examination: winter s.:3/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Level: basic
Note: enabled for web enrollment
Guarantor: RNDr. Michaela Schierová, Ph.D.
Teacher(s): RNDr. Radka Reifová, Ph.D.
RNDr. Michaela Schierová, Ph.D.
Incompatibility : MB140P17, MB140P47
Is incompatible with: MB140P47, MB140P17
In complex pre-requisite: MB110P99
Files Comments Added by
download HARMONOGRAM ZG 2025.docx Harmonogram 2025-26 RNDr. Michaela Schierová, Ph.D.
Annotation -
The lecture introduces students to the main topics of the rapidly developing field, connects classical and molecular biological concepts, and more space is also devoted to population and evolutionary genetics. Traditional topics are expanded, for example, to include the use of DNA polymorphisms in gene mapping, in molecular taxonomy and forensic genetics, the genetics of sex determination, and the basics of epigenetics.
An integral part is the solution of model genetic problems (mainly analyses of genetic cross reults). The lecture is recommended for students of the 1st or 2nd year of the bachelor's degree program in Biology. Basic knowledge of cellular and molecular biology is a prerequisite. Students can also choose Fundamentals of Genetics - Exercises (MB140C16), which freely follow the lecture.

To prepare for the exam, you can use not only the presentations for the lecture, but also links to recordings of lectures from 2020/21, which are stored on the Charles University streamserver

The lectures are freely followed by seminar (MB140C16)
Assignments for exercises will also be presented on Moodle
Consultations by prior arrangement - after the lecture, exercise or by e-mail.

The address to the course on Moodle (lecture and exercise presentation) for the year 2025/26 will be updated before the start of the semester. Log in to the Moodle page - you will have access to current links to assignments, tests, etc.

Please note, the lectures are given in Czech language only. The modified English version is the course MB140P16E.
Last update: Schierová Michaela, RNDr., Ph.D. (31.07.2025)
Literature -

Klug W.S., Cummings M.R., Spencer C.: Concepts of Genetics (8th ed.). Pearson Education, Inc., Upper Saddle River, NJ, USA, 2006.

Snustad D.P., Simmons M.J.: Principles of Genetics (4th ed.). John Wiley and Sons, Inc., Hoboken, NJ, USA, 2006.

Russell P.J.: i-Genetics: A Mendelian Approach. Pearson Education, Inc., and Benjamin Cummings, San Francisco, CA, USA, 2006.

Griffiths A.J.F., Wessler S.R., Lewontin R.C., Gelbart W.M., Suzuki D.T., Miller J.H.: Introduction to Genetic Analysis (8th ed.). W.H. Freeman and Company, New York, NY, USA, 2005.

Last update: Lichá Irena, RNDr., CSc. (12.05.2009)
Syllabus -

1. Genetic terminology:

Characters, genes, alleles. Structure of bacterial and eukaryotic genes. Shift in the concept of a character (biochemical characters, length of restriction fragments, DNA polymorphism). Alleles: how they differ. Dominance and recessiveness. Multiallelicism. Relativity of the relationship between alleles. Genotype and genome. Genotype and phenotype. Homozygote and heterozygote. Genetic symbolism. Expressivity and penetrance. Pleiotropy.

2. Basics of cytogenetics: Cell nucleus. Chromosomes of eukaryotes: structure and classification. Euchromatin and heterochromatin. Homologous chromosomes, autosomes and gonosomes. Mitosis, meiosis. Banding techniques. Karyotype. Chromosome mutations: number, structure, syndromes. In situ hybridization. Polyploidy. Cell free DNA. Special types of chromosomes: brush-shaped, polytene, homocentric.

3. Genetics of trait transmission: Mendel's laws. Connection with meiosis. Parental and filial generations. Types of crossing. Genotypic and phenotypic cleavage ratios. Gene interactions: types, causes, examples. Phenotypic cleavage ratios. Inheritance of sex-linked, sex-controlled and sex-influenced traits. Derivation of more complex cleavage ratios. Hypothesis testing. Pedigree analysis.

4. Genetically determined sex determination: genes, chromosomes, plasmids. Sex phenotype (primary and secondary visual characters) x fertility. Chromosomal sex determination: Human sex chromosomes, comparison and evolution. Haplodiploid sex determination in bees.

5. Gene linkage. Recombination and crossing over. Connection with meiosis. Recombinant and non-recombinant gametes. Linkage phase cis and trans. Back analytical crossing - B1 generation. Derivation of cleavage ratios, determination of distance between two genes. Morgan and Bateson number. Gene mapping. Two-point test. Three-point test. Genetic and cytogenetic maps. Conjugation mapping in bacteria.

6. Extranuclear inheritance: Phenotypic manifestations. Endosymbiotic theory. Gene content of cpDNA and mtDNA. Human diseases and mtDNA.

7. Nucleic acids: Properties of genetic material. Evidence of the function of DNA and RNA. DNA structure. Genomes. Types of DNA sequences: by product, frequency of occurrence, localization in the cell: Unique and repetitive sequences. Multigene families. Use of repetitive sequences in forensic genetics and molecular taxonomy (microsatellites, RAPD a RFLP)

8. Mutations and mutagens: Classification of mutations. Classification of mutagens. Testing of mutagens. Repair systems. Transposons and mutations. Use of mutants in biology.

9. Gene expression. Terminology. Basic features of gene expression regulation in bacteria and eukaryotes. Oncogenesis: disorder of regulation. Two-hit theory of oncogenesis. Oncogenes and tumor suppressor genes. Developmental genetics: maternal and zygotic genes. Homeotic genes: regulatory cascades. Quantitative genetics: traits of quantitative nature, traits with threshold value. Theory of polygenic system. Influence of genotype and environment on phenotypic variability. Study of twins. Epigenetics, imprinting. Phenotypic manifestations of epigenetic information disorders in embryogenesis and during aging of the organism. Inactivation of the X chromosome - compensation of gene dosage.

10. Population genetics. Different approaches of classical and population genetics. Modern synthesis and understanding of evolution in terms of changes in allele frequency in a population. Panmictic population, effective population size, genetic polymorphism, haplotype. Methods of studying genetic polymorphism. Hardy-Weinberg equilibrium. Inbreeding. Mechanisms responsible for changes in allele frequency in a population (genetic drift, selection, evolutionary moves, migration). Types of selection. Fitness and selection coefficient. Linkage disequilibrium.

11. Evolutionary genetics: Genetics of speciation. How to define a species? The emergence of reproductive isolation. Internal and external reproductive isolation barriers.. The role of sex chromosomes in speciation. Allopatric, sympatric, parapatric speciation. Speciation by polyploidization and hybridization. Hybrid zones. Reinforcement. The role of selection, drift and gene conflicts in the emergence of species. Neutral theory and coalescence theory. Probability of mutation fixation. Average mutation fixation time. Substitution rate. Intraspecific genetic variability and interspecific divergence. How to measure polymorphism and divergence? Phylogenetic trees. Molecular clock. What is the relationship between the rate of molecular and phenotypic evolution?

 

Last update: Schierová Michaela, RNDr., Ph.D. (31.07.2025)
Learning outcomes - Czech

Po úspěšném absolvování přednášky Základy genetiky (MB140P16) student:

  1. rozumí základní genetické terminologii, dokáže vysvětlit pojmy jako gen, alela, genotyp, fenotyp, dominance, recesivita, penetrance, expresivita, pleiotropie, multialelismus a symboliku genů
  2. popíše strukturu a funkci nukleových kyselin, včetně typů DNA sekvencí (unikátní, repetitivní), jejich využití ve forenzní genetice a molekulární taxonomii (RAPD, RFLP, mikrosatelity)
  3. vysvětlí principy jaderného dělení – mitózu a meiózu – včetně jejich významu pro genetickou variabilitu potomstva a stabilitu genomu.
  4. chápe Mendelovy zákony dědičnosti, umí aplikovat monohybridní a dihybridní křížení včetně odchylek (interakce alel, nealelické interakce, vazba genů)
  5. rozumí důsledkům vazby genů a principům genetického mapování u modelových eukaryontních organismů i u člověka, zná princip konjugačního mapování
  6. rozumí principům mimojaderné dědičnosti, dokáže popsat genetický obsah chloroplastové a mitochondriální DNA a důsledky lokalizace genu v mimojaderné DNA na jeho přenos do dalších generací
  7. rozumí principům dědičnosti genů lokalizovaných na pohlavních chromozomech, vysvětlí rozdíly v přenosu genu u homogametního a heterogametního pohlaví, vysvětlí různé typy genetické determinace pohlaví
  8. zná mechanismus působení mutagenů (fyzikálních, chemických i biologických) a metody testování jejich účinků (Ames test, cometa assay).
  9. zná klasifikaci mutací a je schopen posoudit jejich vliv na fenotyp. Zná souvislost mezi různými typy genových mutací a genetickým kódem. Popíše různé typy reparace DNA
  10. vysvětlí základní rozdíly v regulaci genové exprese u bakterií a eukaryot, rozumí pojmům operon, epigenetické změny, genomový imprinting, lyonizace
  11. zná základní principy populační genetiky, rozumí popisu struktury populace pomocí Hardy–Weinbergovy rovnováhy a zná jevy, které ideální panmiktickou populaci vychylují z rovnováhy.
Last update: Schierová Michaela, RNDr., Ph.D. (31.07.2025)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html