Fluorescence spectroscopy in biology - MB140C75E
Title: Fluorescence spectroscopy in biology
Czech title: Fluorescenční spektroskopie v biologii
Guaranteed by: Department of Genetics and Microbiology (31-140)
Faculty: Faculty of Science
Actual: from 2023 to 2023
Semester: winter
E-Credits: 2
Examination process: winter s.:
Hours per week, examination: winter s.:0/1, C [TS]
Capacity: 10
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English
Level: specialized
Note: enabled for web enrollment
Guarantor: doc. RNDr. Radovan Fišer, Ph.D.
Teacher(s): RNDr. Tereza Dolejšová, Ph.D.
doc. RNDr. Radovan Fišer, Ph.D.
RNDr. Petra Lišková, Ph.D.
Opinion survey results   Examination dates   WS schedule    E-learning course
Annotation -
Last update: doc. RNDr. Radovan Fišer, Ph.D. (08.10.2020)
If possible, a full-time exercise will take place in 2020/2021. In case of a change to the online version, the enrolled students will be informed in time.

Laboratory course in fluorescence spectroscopy with biological and biochemical applications. The course covers introductory lecture about fluorescence methods and introductions into individual practical works covering: spectra measurements, fluorescence quenching, polarized fluorescence, FRET, fluorescence of proteins, dynamics of biological membranes, physiological characteristics of cells measured by fluorescence techniques, digital image processing.
Literature -
Last update: doc. RNDr. Radovan Fišer, Ph.D. (18.03.2019)

 

The course includes an introductory lecture, presentation is available for course participants through Moodle.

 

Joseph R. Lakowicz (2006): Principles of Fluorescence Spectroscopy, 3rd edition, Springer 

Requirements to the exam -
Last update: RNDr. Petra Lišková, Ph.D. (20.08.2021)

To gain the credits, one must be present at the lecture, pass the entrance test operated through the e-learning platform Moodle http://dl2.cuni.cz/course/view.php?id=242 (with minimal success rate 60%).

 

For the processing of the results during the course and for passing the course, own laptop capable of wireless connection (Wifi) is required.

It is also necessary to hand over complete reports in Excel file. Excel file must be uploaded as a task in Moodle to the date determined at the end of the course.

Syllabus -
Last update: RNDr. Petra Lišková, Ph.D. (20.08.2021)

Entrance test, introductions to individual practical tasks, independent measurements on fluorometer, evaluation of experimental data, preparation of protocols.

Practical tasks:

a) Fluorometer calibration, excitation and emission spectra, fluorescence intensity, polarity of environment. Artifacts (inner filter effect, background correction, Raman scattering). Design of experiments and data evaluation.

b) Tryptophan and tyrosine as intrinsic fluorophores, their emission spectra alone and in proteins, spectral shift.

c) Polarized fluorescence, fluorescence anisotropy, membrane fluidity and phase transition.

d) Time-resolved measurement: determination of concentration of Cl- ions (quenching).

e) Evaluation of the data from the confocal microscope: GP of Laurdanu (membrane fluidity); ratiometric fluorescence measurements (changes in calcium concentration in the cells).

 

Software used: MS Excel or Gnumeric (GNU) spreadsheet, Fityk (data anlysis and fitting, non-linear regression; http://fityk.nieto.pl/), WCIF ImageJ (microscopic image processing; http://fiji.sc/Fiji, http://imagej.net/Welcome).

Entry requirements -
Last update: RNDr. Petra Lišková, Ph.D. (20.08.2021)

The course precedes the entrance test. To be familiar with therms of biochemistry is highly recommended. It is necessary to have skills to work with either MS Excel or Gnumeric or OpenOffice Calc or other.

For the processing of the results during the course and for passing the course, own laptop capable of wireless connection (Wifi) is required.