SubjectsSubjects(version: 970)
Course, academic year 2008/2009
   Login via CAS
Analysis of quantitative data and SPSS - JSB029
Title: Základy analýzy kvantitativních dat a SPSS
Guaranteed by: Department of Sociology (23-KS)
Faculty: Faculty of Social Sciences
Actual: from 2008 to 2009
Semester: winter
E-Credits: 6
Examination process: winter s.:
Hours per week, examination: winter s.:2/2, Ex [HT]
Capacity: unknown / unknown (unknown)Schedule is not published yet, this information might be misleading.
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: PhDr. Ing. Petr Soukup, Ph.D.
Mgr. Jiří Remr, Ph.D.
PhDr. Natálie Simonová
Examination dates   Schedule   Noticeboard   
Annotation -
The course is follow up of Statistics I and Statistics II. This course is focused on advanced statistical techniques and data analysis in SPSS.
Last update: Soukup Petr, PhDr. Ing., Ph.D. (07.10.2010)
Aim of the course -

The goal is to broaden knowladges of stastical techniques (esp. exploratory ones) and to broaden analytical skills in SPSS.

Last update: Soukup Vladimír, Mgr., Ph.D. (10.04.2008)
Literature -

Obligatory:

Hendl J. 2004. Přehled statistických metod zpracování dat. Praha: Portál

HINDLS, Richard - HRONOVÁ, Stanislava - SEGER, Jan. 2004: Statistika pro ekonomy. 5. vydání, Professional Publishing 2004, Praha

Recommended:

Hebák, Hustopecký, Malá. 2005: Vícerozměrné statistické metody (2), Informatorium.

Hebák a kol. 2005: Vícerozměrné statistické metody (3), Informatorium.

HINDLS, Richard, HRONOVÁ, Stanislava, NOVÁK, Ilja. 2000: Metody statistické analýzy pro ekonomy. 2. přepr. vyd. Praha : Management Press

HINDLS, Richard - HRONOVÁ, Stanislava - SEGER, Jan. 2004: Statistika pro ekonomy. 5. vydání, Professional Publishing 2004, Praha

Elektronic textbook:

StatSoft, Inc. (2004). Electronic Statistics Textbook. Tulsa, OK: StatSoft.

http://www.statsoft.com/textbook/stathome.html

Last update: Soukup Vladimír, Mgr., Ph.D. (26.06.2008)
Teaching methods -

lecture/exercise

Last update: Soukup Vladimír, Mgr., Ph.D. (10.04.2008)
Syllabus -

1. Multiple regression analysis, dummy variables. Problems- heteroskedasticity, multicolinearity.

2. Covariance and correlation. Bivariate, multivariate and partial correlation. Spurious correlation. Correlation matrix.

3. Factor analysis. Basics, number of factors, tests, Extraction and rotation.

4. Factor analysis. Typologies, control of scales. Realibilty of scales. Factor scores.

5. Cluster analysis, basics, clustering of cases. Measurement of distances. Hierarchical clustering.

6. Clustrer membership. Typologies. K-means cluster. Clustering of variables.

7. Discrimination analysis.

8. Time series. Descriptives in time series. Types of time series.

9. Moving averages. Trend functions. Seasonal models of time series.

10. Missing values, results, handling and replacing. Data weighting.

11. Open ended questions and data analysis. Coding, duplicities. Frequency and contingency table.

12. Random and non-random samples and influence on statistical techniques. Small samples, samples from small populations.

Last update: Soukup Vladimír, Mgr., Ph.D. (26.06.2008)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html