SubjectsSubjects(version: 970)
Course, academic year 2016/2017
   Login via CAS
Robust statistics and econometrics - JEM160
Title: Robust statistics and econometrics
Czech title: Robustní statistika a ekonometrie
Guaranteed by: Institute of Economic Studies (23-IES)
Faculty: Faculty of Social Sciences
Actual: from 2016 to 2016
Semester: summer
E-Credits: 6
Examination process: summer s.:
Hours per week, examination: summer s.:2/2, Ex [HT]
Capacity: 40 / 40 (40)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English
Teaching methods: full-time
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
Guarantor: prof. RNDr. Jan Ámos Víšek, CSc.
Teacher(s): Mgr. Tomáš Křehlík, Ph.D.
prof. RNDr. Jan Ámos Víšek, CSc.
Examination dates   Schedule   Noticeboard   
Files Comments Added by
download 01 The first full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 01 The first lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 02 The second full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 02 The second lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 03 The third full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 03 The third lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 04 The fourth full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 04 The fourth lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 05 The fifth full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 05 The fifth lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 06 The sixth full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 06 The sixth lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 07 The seventh full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 07 The seventh lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 08 The eighth full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 08 The eighth lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 09 The ninth full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 09 The ninth lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 10 The tenth full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 10 The tenth lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 11 The eleventh full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 11 The eleventh lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 12 The twelfth full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 12 The twelfth lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 13 The thirteenth full lecture from robust statistics and econometrics.pdf prof. RNDr. Jan Ámos Víšek, CSc.
download 13 The thirteenth lecture handout.pdf prof. RNDr. Jan Ámos Víšek, CSc.
Annotation
Non-traditional view on the regression analysis as a tool for model building as well as a tool of structure analysis of data, alternative methods (to OLS and ML) of estimation and for them modified classical diagnostic tools for specification of model, historical roots and philosophical consequences.
Last update: VISEK (07.01.2015)
Aim of the course

To enlarge the theoretical knowledge of regression analysis over its classical framework  of (statistical or econometric) explanation. Moreover, to allow the students to look over the horizon of usual mathematically exactly constructed approach of formalized modelling, i.e. to offer an insight into such aspects ofmathematical, formalized description of universe which we can meet  neither in the statistical nor the econometric texts. The content of the course can be decently accommodated to the topics of study and of interest of the attendants.

Last update: VISEK (07.01.2015)
Course completion requirements

1) To pass the seminar with elaborating some homeworks.

2) Defending some small project in groups of several people,

      e.g. some case study on an interesting material with employment of, may be  of self made (?), software (in MatLab or R or ...) .

Last update: VISEK (07.01.2015)
Literature

Literature:

Atkinson, A.C., M. Riani (2002) :  Exploring Multivariate Data with the Forward Search.  Springer.

Chatterjee, S., Hadi, A. S. (1988): Sensitivity Analysis in Linear Regression. New York: J. Wiley and Sons. 

Dutter,R.,  P. Filzmoser, P. J. Rousseeuw (2003) :  Development in Robust Statistics.  Springer.

Hampel, F. R., E. M. Ronchetti, P.  J. Rousseeuw, W.  A. Stahel (1986):  Robust  Statistics -- The Approach Based on Influence Functions.  New York 1986,  J.Wiley  and Son.

Huber, P.J.(1981):  Robust Statistics. New York: J.Wiley and Sons.

Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., Lee, T. C. (1985):  The Theory and Practice of Econometrics. New York 1985,  J.Wiley and Sons (second edition).

Rousseeuw, P. J., A. M. Leroy (1987): Robust Regression and Outlier Detection.  New York 1987, J.Wiley and Sons.

 Štěpán, J. (1987):  Teorie pravděpodobnosti.  Praha 1987 Academia. 

Víšek, J. Á. : Papers according to the interest of participants , see  http://ies.fsv.cuni.cz/sci/publication/user/id/58/lang/en .

Zvára, K. (1989): Regresní analýza. Praha 1989, Academia.

 

 

 

Last update: VISEK (07.01.2015)
Teaching methods

13 lectures and seminars

Last update: VISEK (07.01.2015)
Syllabus
  1. Robust statistics and ekonometrics as a complement to the classical methods. Inspirations for robust approach - differences with respect to the classical approach.

  2. Main problems and main goals of robust statistics and econometrics. Proposals by Peter Huber versus an approach by Frank Hampel - the global versus the local approach, Prokhorov versus Kolmogorov-Smirnov metric, examples of convergence of sequences of d.f.‘s.

  3. Classical and newly proposed characteristics of point estimators the gross-error and the local-shift sensitivity, the rejection  and the breakdown point .

  4. Specifications of these characteristics for the basic statistical and econometric tasks - the location and the scale parameter, the regression model. Role of invariance and equivariance in the (robust) point estimation.

  5. The most frequent families of robust estimators - M, L, R, the minimal distance and the minimal volume estimators, etc.

  6. Historical survey: from  to over the regression quantiles to Looking for the algorithm, its implementation and verification - patterns of processing the data, sequential estimation of contamination level by means of LTS, forward search.

  7. From the minimization of median of the squared residuals and of the least trimmed squares to the least weighted squares.

  8. Proving methods - Skorohod imbedding into the Wiener process, generalization of Kolmogorov-Smirnov results about the uniform convergence of empirical d.f.’s to the theoretical ("underlying") d.f. in the regression framework.

  9. Problems with the high breakdown point - the large sensitivity to the deletion/inclusion of one observation and to a shift of inliers. Solution of this problem by the least weighted squares.

  10. Robustification of alternative methods (alternative to the ordinary least squares or the maximum likelihood)  as the instrumental variables, orthogonal or ridge regression.

  11. Robustification of classical characteristics of quality of model - significance of the individual explanatory variable, tests of submodels, robustification of  the classical diagnostic tools - Durbin-Watson, White , Hausman or Chow test for robust estimation.

  12. Examples of robust processing the panel data - the model with fixed and random effects, gravitational model.

  13. Philosophy of the formalized modeling with short excursions into the history of processing the data.

Last update: VISEK (17.02.2015)
Entry requirements

Just open mind for new things and ideas and, maybe, a desire to do something original.

Last update: VISEK (07.01.2015)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html