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0 Equilibrium quantum statistics

0.1 Quantum-mechanical and statistical averaging

• basic statements of the quantum theory:

◮ the pure state of a quantum-mechanical system is defined
by a state vector |Ψ〉 in the Hilbert space

◮ a real physical observable is represented by a Hermitian
operator A

◮ the quantum-mechanical average of the quantity (operator)
A in the state |Ψ〉 is given by

Ā{Ψ} = 〈Ψ|A|Ψ〉 , (1)

where we assume the state vector normalized to unity,
〈Ψ|Ψ〉 = 1



• if the system can be prepared in several states |Ψj〉
with probabilities pj ( j = 1, 2, . . . ; pj ≥ 0,

∑

j pj = 1),
the quantum-mechanical and statistical average is given by

〈A〉 = Ā =
∑

j

pj 〈Ψj |A|Ψj〉 =
∑

j

pj Tr{A|Ψj〉〈Ψj |}

= Tr

{

A

[

∑

j

pj |Ψj〉〈Ψj |

]}

= Tr(Aρ) , (2)

where Tr denotes the trace and where we introduced the
density matrix (statistical operator) ρ given by

ρ =
∑

j

|Ψj〉 pj 〈Ψj | , (3)

which is a positive-definite Hermitian operator



• (two technical notes)

◮ within the Dirac formalism, a ket-vector |φ〉 and
a bra-vector 〈χ| define a linear operator |φ〉〈χ|;
its action is given by |ψ〉 7→ |φ〉〈χ|ψ〉;
its trace equals the scalar product of both vectors:

Tr (|φ〉〈χ|) = 〈χ|φ〉

◮ for any operators X and Y : Tr(XY ) = Tr(YX )

• the density matrix satisfies relations

Tr(ρ) = 1 , Tr(ρ2) ≤ 1 , (4)

where the former one is a direct consequence of 〈Ψj |Ψj〉 = 1
and

∑

j pj = 1; the equality sign in the latter relation is
encountered only for pure states



0.2 Quantum canonical distribution

• the canonical distribution (Boltzmann statistics) for a system
with Hamiltonian H and at temperature T is defined as

ρ(T ) =
1

Z (T )
exp(−βH) , (5)

where β = (kBT )−1 and the partition function Z (T ) is given
by

Z (T ) = Tr{exp(−βH)} (6)

• if the eigenvalues and normalized eigenvectors of H are
denoted by En and |n〉 (n = 1, 2, . . . ), we get for Z (T )

Z (T ) =
∑

n

exp(−βEn) , (7)



for the density matrix ρ and its matrix elements ρmn

ρ(T ) =
∑

n

|n〉wn(T ) 〈n| , wn(T ) =
exp(−βEn)

Z (T )
,

ρmn(T ) = 〈m|ρ(T )|n〉 = wn(T ) δmn , (8)

and for the general quantum-mechanical and statistical
average (with matrix elements Amn = 〈m|A|n〉)

〈A〉(T ) = Ā(T ) = Tr{Aρ(T )} =
∑

n

wn(T ) 〈n|A|n〉

=
∑

n

wn(T )Ann =
1

Z (T )

∑

n

exp(−βEn)Ann , (9)

which has the form of Eq. (2) [ Ā =
∑

j
pj〈Ψj |A|Ψj〉 ]



• (a technical note)
if we know all eigenvalues En (n = 1, 2, . . . ) and normalized
eigenvectors |n〉 of the Hamiltonian H, we can write its
spectral representation

H =
∑

n

En |n〉〈n| =
∑

n

|n〉En 〈n| ;

this representation allows us to extend an arbitrary function
f (x) of a real variable x to the same function of the operator
H:

f (H) =
∑

n

f (En) |n〉〈n| =
∑

n

|n〉 f (En) 〈n| ;

this definition can be used, e.g., for f (H) = exp(−βH)



• from the partition function Z (T ), other quantities [internal
energy U(T ), free energy F (T ), entropy S(T ), heat capacity
C (T )] can be obtained in the same way as in the classical
case; this leads, e.g., to expressions

U(T ) = −
∂

∂β
ln[Z (T )], F (T ) = −

1

β
ln[Z (T )], (10)

S(T ) = −
∂F (T )

∂T
= −kB Tr{ρ(T ) ln[ρ(T )]}

= −kB
∑

n

wn(T ) ln[wn(T )] , (11)

C (T ) =
∂U(T )

∂T
= T

∂S(T )

∂T
= −T

∂2F (T )

∂T 2
(12)



• the relations involving derivatives with respect to an external
parameter ξ of the Hamiltonian H(ξ) require more effort in
the quantum case, since the operators H(ξ) and ∂H(ξ)/∂ξ
do not commute in general. It can be proved that

〈

∂H(ξ)

∂ξ

〉

(T ) =
∂F (T ; ξ)

∂ξ
, (13)

while in the special case of a linear ξ-dependence

H(ξ) = H0 + ξB , ξ → 0 , (14)

we get

〈B〉0(T ) =
∂F (T ; ξ = 0)

∂ξ
; (15)

these relations coincide with their classical counterparts.



0.3 Quantum ideal gases

• systems of non-interacting particles: ideal gases;
in the quantum case:

identical particles are indistinguishable

• two different classes (according to symmetry of wave-
function Ψ with respect to permutation of two particles):

◮ bosons – Ψ symmetric,
integer spin (photons, phonons, magnons, . . . )

◮ fermions – Ψ antisymmetric (Pauli exclusion principle),
half-integer spin (electrons, protons, neutrons, . . . )

• many-particle systems in contact with surroundings:

◮ varying energy −→ temperature T

◮ varying no. of particles −→ chemical potential µ



• for an ideal gas, its Hamiltonian H̃ on the many-particle
Hilbert space is determined by a one-particle Hamiltonian H,

H =
M
∑

λ=1

|λ〉Eλ 〈λ| , (16)

where |λ〉 and Eλ (λ = 1, 2, . . . ,M) are normalized
eigenvectors and eigenvalues of H

• the eigenstates of H̃ (and the orthonormal basis in the
many-particle Hilbert space) are given by

S {|λ1〉 ⊗ |λ2〉 ⊗ . . . ⊗ |λN〉} =
∣

∣{nλ}
M
λ=1

〉

, (17)

where: N (N = 0, 1, 2, . . . ) – total number of particles,
S – (anti)symmetrization including normalization,
nλ – occupation numbers



for bosons: nλ ∈ {0, 1, 2, . . . }

for fermions: nλ ∈ {0, 1} (18)

• the total number of particles in a particular eigenstate,
Eq. (17), is equal to

N{nλ} =
M
∑

λ=1

nλ (19)

and the corresponding eigenvalue of H̃ is

Ẽ{nλ} =
M
∑

λ=1

nλEλ (20)



• let us consider a general one-particle operator A,

A =

M
∑

λ,ν=1

|λ〉Aλν 〈ν| , Aλν = 〈λ|A|ν〉; (21)

this operator leads naturally to its counterpart Ã acting
on the many-particle states as follows:

Ã {|λ1〉 ⊗ |λ2〉 ⊗ . . . ⊗ |λN〉}

= (A|λ1〉)⊗ |λ2〉 ⊗ . . . ⊗ |λN〉

+ |λ1〉 ⊗ (A|λ2〉)⊗ . . . ⊗ |λN〉

+ . . .

+ |λ1〉 ⊗ |λ2〉 ⊗ . . . ⊗ (A|λN〉) ; (22)

examples of A/Ã: kinetic energy, magnetic moment, spin, . . .



• (a comment on second quantization)
in terms of creation (a+λ ) and annihilation (aλ) operators,
the extended operators H̃ and Ã can be written as

H̃ =
M
∑

λ=1

Eλa
+
λ aλ , Ã =

M
∑

λ,ν=1

Aλνa
+
λ aν

• the quantum-mechanical averages of Ã in the eigenstates
of H̃ are given by

〈

{nλ}
M
λ=1

∣

∣ Ã
∣

∣{nλ}
M
λ=1

〉

=

M
∑

λ=1

nλAλλ =

M
∑

λ=1

nλ〈λ|A|λ〉, (23)

which has an obvious physical meaning



• in order to get the quantum-mechanical and statistical
average of Ã, we need the statistical averages of the
occupation numbers nλ at a given temperature T and
chemical potential µ

• the probability of a particular value nλ ∝ exp[β(µ−Eλ)nλ],

which yields the average occupation number 〈nλ〉 as

〈nλ〉(T , µ) =
1

exp[β(Eλ − µ)]∓ 1
≡ fλ(T , µ) . (24)

This is the well-known Bose-Einstein or Fermi-Dirac
distribution function (BE – upper sign, FD – lower sign).



• Bose-Einstein / Fermi-Dirac distribution functions

f (E ;T , µ) =
1

exp[β(E − µ)]∓ 1
(25)

0
µ

f

E

BE

0

1/2

1

µ

f

E

FD



• the quantum-mechanical and statistical average
of the observable Ã follows from Eq. (23) and Eq. (24):

Ā(T , µ) =

M
∑

λ=1

Aλλ 〈nλ〉(T , µ) =

M
∑

λ=1

Aλλ fλ(T , µ) , (26)

with an obvious physical meaning; this result can be recast as

Ā(T , µ) =
M
∑

λ=1

〈λ|A|λ〉 fλ(T , µ) = Tr{Af (T , µ)} , (27)

where the trace refers to the one-particle Hilbert space

and where we introduced a one-particle density matrix

f (T , µ) =

M
∑

λ=1

|λ〉 fλ(T , µ) 〈λ| (28)



1 Kubo linear response theory

1.0 Introduction

◮ the isothermic susceptibility refers to quasi-static
perturbations (very slow changes of the Hamiltonian):
the system remains in full thermodynamic equilibrium

◮ the Kubo theory describes an opposite limit:
the perturbation and the response vary in time;
full equilibrium only before the perturbation is switched on;
the interaction system–surroundings is completely neglected
during the process =⇒ ’adiabatic’ response

◮ despite this simplification, the Kubo theory proved very
useful and successful for a wide class of problems

◮ here: basic properties of (non-)interacting electrons within
a simple model and using a mean-field-like approximation



1.1 General formulation

• let us consider a time-independent Hamiltonian H0 of a
quantum-mechanical system (in contact with surroundings)
and let as add a small time-dependent perturbation

H1(t) = B exp(−iωt + ηt) + B+ exp(iωt + ηt) , (29)

where B is an operator and η → 0+, so that the total
Hamiltonian

H(t) = H0 + H1(t) (30)

coincides with H0 in very distant past (t → −∞)

• this setup corresponds to a slow (on a microscopic time
scale) switching on the perturbation added to the original
unperturbed time-independent Hamiltonian H0



• the equilibrium density matrix at temperature T

[with β = 1/(kBT )] is

ρ0 =
1

Z
exp(−βH0) , Z = Tr{exp(−βH0)} ; (31)

in the basis of eigenvectors |m〉 of the Hamiltonian H0 with
eigenvalues Em, the matrix elements of ρ0 are given by

〈m|ρ0|n〉 = δmnwm , wm =
1

Z
exp(−βEm) , (32)

the partition function is equal to Z =
∑

m exp(−βEm)
and the operator ρ0 is explicitly given by

ρ0 =
∑

m

|m〉wm 〈m| (33)



• let us investigate the time evolution (~ = 1) due to the total
Hamiltonian H(t) of states |Ψm(t)〉 and of the density matrix

ρ(t) =
∑

m

|Ψm(t)〉wm 〈Ψm(t)| , (34)

which satisfy following initial conditions for t → −∞:

exp(iEmt)|Ψm(t)〉 → |m〉 , ρ(−∞) = ρ0 (35)

• physically, this procedure corresponds to a complete neglect
of the interaction between the studied system and its
surroundings during the switching on the perturbation H1(t)
(this interaction is responsible for bringing the system into
thermodynamic equilibrium at temperature T for t = −∞)

=⇒ ’adiabatic’ (mechanical) response



• the Schrödinger equation (~ = 1) for the states |Ψm(t)〉,

i
∂

∂t
|Ψm(t)〉 = H(t)|Ψm(t)〉 ,

leads to the Liouville (von Neumann) equation for the density
matrix ρ(t),

i
∂

∂t
ρ(t) = [H(t), ρ(t)] , (36)

where [A,B] = AB − BA denotes the commutator

• let us write the total density matrix in a form

ρ(t) = ρ0 + ρ1(t) , ρ1(−∞) = 0 , (37)

where ρ1(t) is considered as an infinitesimally small correction
to ρ0 due to the perturbation H1(t)



• this yields (with keeping only linear terms)

i
∂

∂t
ρ1(t) = [H0 + H1(t), ρ0 + ρ1(t)] ≈ [H0, ρ1(t)] + [H1(t), ρ0]

and finally a differential equation for the ρ1(t),

i
∂

∂t
ρ1(t) + [ρ1(t),H0] = [H1(t), ρ0]

= [B , ρ0] exp(−iωt + ηt) + [B+, ρ0] exp(iωt + ηt) . (38)

The latter can be solved by using an Ansatz

ρ1(t) = σ exp(−iωt + ηt) + σ+ exp(iωt + ηt) , (39)

where σ is a time-independent operator (matrix).
Substitution of this Ansatz into Eq. (38) leads to

i(−iω + η)σ + [σ,H0] = [B , ρ0] (40)



and to an equivalent (Hermitian conjugate) relation.

• the solution of Eq. (40),

(ω + iη)σ + [σ,H0] = [B , ρ0] ,

can be done in the basis of the eigenstates of H0

(with 〈n|σ|m〉 = σnm, 〈n|B |m〉 = Bnm). One obtains:

(ω + iη)σnm + σnm(Em − En) = Bnm(wm − wn) ,

which provides the final result in a form

σnm = Bnm

wm − wn

ω + iη + Em − En

. (41)



1.2 Generalized susceptibility and Kramers-Krönig

relations

• a physical quantity of the system, given by the statistical
average of a Hermitian operator A, depends on time as

Ā(t) = Tr{Aρ(t)} = Ā0 + Ā1(t) ,

Ā0 = Tr{Aρ0} , Ā1(t) = Tr{Aρ1(t)} ,

where the (infinitesimally small) time-dependent term is

Ā1(t) = Tr{Aσ} exp(−iωt + ηt) + c.c.

=
∑

mn

Amnσnm exp(−iωt + ηt) + c.c.

≡ χAB(ω) exp(−iωt + ηt) + c.c. , (42)

where c.c. denotes a complex conjugate term



• the quantity χAB(ω) is the generalized (Kubo) susceptibility
that is explicitly given by

χAB(ω) =
∑

nm

AmnBnm

wm − wn

ω + iη + Em − En

. (43)

The limit η → 0+ is implicitly assumed in Eq. (43).

• the susceptibility χAB(ω) is a complex number; its
magnitude describes the strength of the response while its
phase refers to the phase shift between the periodic
perturbation H1(t) and the induced response Ā1(t)

• the susceptibility χAB(ω) consists of terms that exhibit
singular behavior for frequencies ω = En − Em, i.e., for
frequencies corresponding to excitation energies of the system



• an example: a system at T = 0 with a non-degenerate
ground state (|0〉, E0)
=⇒ w0 = 1 (ground state),

wn = 0 for n = 1, 2, . . . (excited states),
which yields:

χAB(ω) =

+∞
∑

n=1

(

A0nBn0

ω + iη + E0 − En

−
An0B0n

ω + iη + En − E0

)

=⇒ poles at the excitation energies ω = En − E0 (n ≥ 1):

¶ a pole in the susceptibility ←→ an excited state

¶ weights of the singular terms: selection rules for A0n,B0n



• the limit η → 0+ in χAB(ω) can be perfomed using the
relation

lim
η→0+

1

x ± iη
= ℘

1

x
∓ iπδ(x) , (44)

where x is a real variable, ℘ denotes the principal value,
and δ(x) is the Dirac δ-function; this relation means

lim
η→0+

∫ +∞

−∞

ϕ(x)

x + iη
dx = lim

η→0+

(
∫ −η

−∞

+

∫ +∞

η

)

ϕ(x)

x
dx

− iπϕ(0)

for smooth functions ϕ(x) rapidly decaying for x → ±∞ ;

=⇒ ℘

∫ a

b

x−1 dx = ln |a/b| for b < 0 < a



• decomposition of the susceptibility in two terms:

χAB(ω) = lim
η→0+

∑

nm

AmnBnm

wm − wn

ω + iη + Em − En

≡ χ
(1)
AB(ω) + iχ

(2)
AB(ω) ,

χ
(1)
AB(ω) =

∑

nm

AmnBnm (wm − wn)℘
1

ω + Em − En

,

χ
(2)
AB(ω) = −π

∑

nm

AmnBnm (wm − wn) δ(ω + Em − En) ,

(45)

where χ
(1)
AB(ω) – dispersive part,

χ
(2)
AB(ω) – absorptive part



• notes on the absorptive part:

◮ for B = A = A+, we get:

χ
(2)
AA(ω) ∼

∑

nm |Amn|
2 (wm − wn) δ(ω + Em − En)

◮ χ
(2)
AA(ω) coincides with the imaginary part of χAA(ω)

◮ close relation to the Fermi golden rule: probability (per
unit time) of transitions between two eigenstates |m〉 and
|n〉 of H0 is ∼ |Amn|

2δ(ω + Em − En)

◮ the rate of energy dissipation/absorption by the system

due to the time-dependent perturbation is ∼ ωχ
(2)
AA(ω)

◮ analogy with classical electric circuits:
the Joule’s heat is due to resistivity R – the real part
of the impedance Z(ω) = R + i [Lω − (Cω)−1]



• each of both parts of the susceptibility can be expressed by
means of the other part using the Kramers-Krönig relations:

χ
(1)
AB(ω) = −

1

π
℘

∫ ∞

−∞

1

ω − ζ
χ
(2)
AB(ζ) dζ ,

χ
(2)
AB(ω) =

1

π
℘

∫ ∞

−∞

1

ω − ζ
χ
(1)
AB(ζ) dζ , (46)

provided that the integrals on the r.h.s. converge

• these relations reflect the causality between a general
time-dependent perturbation and the resulting response:

Ā(t) =

∫ t

−∞

F [t, t ′,A,H0,H1(t
′)] dt ′

(integration only over t ′ ≤ t)



• (proof of the Kramers-Krönig relations)
The first of Eq. (46) can be proved using Eq. (45)
and the well-known property of the δ-function, namely

∫∞
−∞ g(x) δ(x − x1) dx = g(x1) ,

while the second of Eq. (46) can be obtained from an identity

∫ ∞

−∞
℘

1

x − x1
℘

1

x − x2
dx = π2 δ(x1 − x2) .

The latter follows from Eq. (44) and from integrals:

∫ ∞

−∞

1

x − x1 − iη1

1

x − x2 + iη2
dx =

2πi

x1 − x2 + i(η1 + η2)
,

∫ ∞

−∞

1

x − x1 + iη1

1

x − x2 + iη2
dx = 0 ,

where x1, x2 are real and η1, η2 are positive.



1.3 Fluctuation-dissipation theorem

• a relation between the Kubo susceptibility and the correlation of
time-dependent fluctuations in the unperturbed system

• in classical statistics – autocorrelation of particle velocity vx :

〈vx〉 = 0 vs. Γx(t) ≡ 〈vx(t)vx(0)〉 6= 0

0 t

vx

0 t

Γx



• for a quantum system with an unperturbed Hamiltonian H0 and
for a Hermitian operator A, we introduce (Heisenberg picture)

A(t) = exp(iH0t)A exp(−iH0t)

and define the corresponding autocorrelation function as

ΓA(t) =
1

2
〈A(t)A+ AA(t)〉 =

1

2
Tr{ρ0[A(t)A+ AA(t)]} , (47)

where ρ0 = Z−1 exp(−βH0), Z = Tr{exp(−βH0)}

• for the Fourier transformation of ΓA(t), defined by

Γ̃A(ω) =
∫ +∞
−∞ exp(iωt) ΓA(t) dt ,

one can prove the fluctuation-dissipation theorem:

Γ̃A(ω) = − coth

(

βω

2

)

χ
(2)
AA(ω) (48)



• proof of Eq. (48): In the basis of eigenvectors of H0, we get

Γ̃A(ω) = π
∑

nm |Amn|
2 (wm + wn) δ(ω + Em − En) ,

where we employed the identity
∫ +∞
−∞ exp(iΩt)dt = 2πδ(Ω).

According to Eq. (45) we have

χ
(2)
AA(ω) = −π

∑

nm |Amn|
2 (wm − wn) δ(ω + Em − En) .

With the use of the identity

wm δ(ω + Em − En) = exp(βω)wn δ(ω + Em − En) ,

we get relations

Γ̃A(ω) = π [1 + exp(βω)]
∑

nm

|Amn|
2 wn δ(ω + Em − En) ,

χ
(2)
AA(ω) = π [1− exp(βω)]

∑

nm

|Amn|
2 wn δ(ω + Em − En) ,

from which the validity of Eq. (48) can easily be seen.



• relation to classical electric circuits:

the macroscopic measurement of the impedance
Z(ω) = R + i [Lω − (Cω)−1] at temperature T provides an
information about the microscopic equilibrium thermal noise,
the so-called Johnson-Nyquist noise due to the current and
voltage fluctuations (present in circuits without an external
source)



1.4 Non-interacting many-particle systems

• the linear response theory for non-interacting many-particle
systems with A and B being one-particle operators can be
formulated entirely in terms of the one-particle Hamiltonian
H(t) = H0 + H1(t)

• eigenvectors and eigenvalues of H0: |λ〉, |ν〉 and Eλ, Eν ;
the equilibrium one-particle density matrix f is given in terms
of average occupation numbers fλ as

f =
∑

λ

|λ〉 fλ 〈λ| , fλ =
1

exp[β(Eλ − µ)]± 1
,

where µ is the chemical potential of the particles and
(+/−) refers to fermions/bosons



• the resulting generalized non-interacting Kubo susceptibility
is given by

χAB(ω) =
∑

λν

AλνBνλ
fλ − fν

ω + iη + Eλ − Eν

(49)

◮ the same formal structure as the general result, Eq. (43)

◮ |λ〉, |ν〉 and fλ, fν instead of |m〉, |n〉 and wm,wn

◮ Eq. (49) employs the one-particle Hilbert space

• the susceptibility χAB(ω) consists of terms that exhibit
singular behavior for frequencies ω = Eν − Eλ, i.e., for
frequencies given by excitation energies of the one-particle
Hamiltonian. These frequencies correspond to the so-called
pair excitations of the non-interacting many-particle system.



• for a many-fermion system at T = 0:

fλ = 1 for Eλ < EF , fλ = 0 for Eλ > EF ,

where EF – the Fermi energy (EF = µ for T = 0)

=⇒ the χAB(ω) consists of
terms connecting an occupied
state with an unoccupied state
(particle-hole excitations) EF

Eλ

k

bc

b

◮ this scheme explains various electronic properties of solids
(optical conductivities, el. and magn. susceptibilities, . . . )



2 Response of homogeneous electron gas

2.1 Jellium model

• atomic nuclei of a solid are replaced by a positively charged
classical homogeneous background on which electrons move

• we consider non-interacting electrons in a constant potential.
The unperturbed one-particle Hamiltonian is (~ = 1):

H0 = −
∆

2m
, (50)

where m is the electron mass;
its eigenvectors are labelled by the reciprocal-space vector k:

|λ〉 . . . |k〉 , 〈r|λ〉 . . .
exp(ik · r)
√

(2π)3
, Eλ . . . E k =

k2

2m

(electron spin ignored – sometimes a factor of 2 added).



• the jellium model is specified by a single parameter – the
homogeneous density ̺ (no. of electrons per unit volume);
for T = 0, the occupied states are for |k| ≡ k ≤ kF ,
where kF – the Fermi-sphere radius, related to EF and ̺:

EF =
k2
F

2m
, kF = 3

√

3π2̺ (51)

b

kF
• values of kF for simple metals
(Li, K, Mg, Ca, Al, . . . ):

0.4 ≤ kFa0 ≤ 1

[a0 = 1/(me ′2) – Bohr radius (~ = 1)

and e ′2 ≡ e2/(4πǫ0)]



2.2 Non-interacting susceptibility of jellium

• as the perturbation, we consider an infinitesimal time- and
space-dependent local potential δV (r′, t ′) which leads to
infinitesimal changes of the electron density δ̺(r, t)

• the most general form of the linear response is given by

δ̺(r, t) =

∫ ∫ t

−∞

χ0(r, r
′, t, t ′) δV (r′, t ′) d3r′ dt ′ (52)

• the unperturbed state of jellium is homogeneous in space and
time =⇒ χ0(r, r

′, t, t ′) = χ0(r− r′, t − t ′) and Eq. (52) can
be simplified by the Fourier transformation (r→ q, t → ω):

δ ˜̺(q, ω) = χ̃0(q, ω) δṼ (q, ω) , (53)



where δ ˜̺(q, ω) =
∫ ∫

exp(−iq · r+ iωt) δ̺(r, t) d3r dt

and similarly for δṼ (q, ω) and χ̃0(q, ω), and where

χ̃0(q, ω) =
2

(2π)3

∫

f k − f k+q

ω + iη + E k − E k+q

d3k (54)

denotes the non-interacting (bare, unrenormalized)
susceptibility of the homogeneous electron gas

• a closed analytic formula

for χ̃0(q, ω) = χ̃0(q, ω)

exists ( here q ≡ |q| )

(Lindhard function –
– not too transparent)

0
0 q

ω

ω = 0

ω > 0, q → 0



• proof of Eq. (54):
We identify |λ〉, |ν〉 with |k〉, |k′〉. The ω-component of the local
perturbing potential δV (r, t) leads to the matrix elements
Bνλ ≡ (2π)−3 δṼ (k′ − k, ω). The Fourier transformed electron
density corresponds to the local operator exp(−iq · r)δ(r− r′) and
its matrix elements are Aλν ≡ 2δ(k′ − k− q), where the factor of
2 accounts for the electron spin and where we used the identity
∫

exp(iQ · r)d3r = (2π)3δ(Q). The quantity δ ˜̺(q, ω) can be
identified with χAB(ω), Eq. (49), and it is explicitly given by

δ ˜̺(q, ω) = 2 (2π)−3

∫ ∫

δ(k′ − k− q) δṼ (k′ − k, ω)

×
f k − f k′

ω + iη + E k − E k′
d3k d3k′

= 2 (2π)−3 δṼ (q, ω)

∫

f k − f k+q

ω + iη + E k − E k+q

d3k ,

which coincides with Eq. (53) and Eq. (54).



• (a technical note on the k-integration)
¶ original integration region for χ̃0(q, ω) – two Fermi spheres

b b

for q > 2kF

0 -q
bb

for q < 2kF

¶ with substitution k → −k− q ( f k ↔ f k+q , E k ↔ E k+q )
we obtain

χ̃0(q, ω) =
2

(2π)3

∫
(

1

ω + iη + E k − E k+q

+
1

−ω − iη + E k − E k+q

)

f k d
3k (55)

(integration over a single Fermi sphere)



2.3 Properties of non-interacting susceptibility

• in the static limit (ω = 0), Eq. (55) and Eq. (44) yield

χ̃0(q, 0) =
4

(2π)3
℘

∫

f k

E k − E k+q

d3k ,

which shows that the static susceptibility is real. We get:

χ̃0(q, 0) =
8π

(2π)3
℘

∫ kF

0
k2dk

∫ π

0
sin θ dθ

−2m

2kq cos θ + q2

= −
2m

π2
℘

∫ kF

0
k2dk

∫ 1

−1
du

1

2kqu + q2

= −
m

π2q

∫ kF

0
k dk ln

∣

∣

∣

∣

2k + q

−2k + q

∣

∣

∣

∣

= −
mq

4π2

∫ 2kF /q

0
y ln

∣

∣

∣

∣

y + 1

y − 1

∣

∣

∣

∣

dy ,

where we substituted cos θ = u and k = qy/2.



• let us introduce a special function F (x) defined for x > 0 as

F (x) =
1

x

∫ x

0
y ln

∣

∣

∣

∣

y + 1

y − 1

∣

∣

∣

∣

dy = 1 +
x2 − 1

2x
ln

∣

∣

∣

∣

x + 1

x − 1

∣

∣

∣

∣

(56)
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 0  1  2  3
x

F(x)

F(1/x)

its properties:

◮ for x → 0: F (x) ≈ 2x2/3

◮ for x → +∞:
F (x) ≈ 2− 2/(3x2)

◮ F (1) = 1 and F ′(1) = +∞
(infinite derivative)

◮ for all x : F (x) + F (x−1) = 2



• the resulting static non-interacting susceptibility in the reciprocal
space is

χ̃0(q, 0) = −
mkF

2π2
F

(

2kF
q

)

, (57)

and its real-space counterpart is (|r| ≡ r)

χ0(r, 0) = (2π)−3

∫

exp(iq · r) χ̃0(q, 0) d
3q

=
m

(2π)3
(2kF r) cos(2kF r) − sin(2kF r)

r4
(58)

• the most important features of these functions are:

◮ infinite derivative of χ̃0(q, 0) at q = 2kF
(’touching Fermi spheres’)

◮ oscillatory behavior of χ0(r, 0) for r →∞ with a period π/kF
and an amplitude decaying as r−3 (Friedel oscillations)



Static non-interacting susceptibility of the jellium model:

χ̃0(q, 0) and χ0(r , 0)
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• experimental verification of the Friedel oscillations:

◮ variations of local quantities induced by defects:
non-monotonic dependence on distance from the defect

◮ in magnetism: the RKKY interaction between localized
magnetic moments mediated by the conduction electrons
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• for ω > 0, the imaginary part of χ̃0(q, ω) is according to
Eq. (55) and Eq. (44) given by

∼

∫

[

δ(ω + E k − E k+q) − δ(ω − E k + E k+q)
]

f k d
3k ,

which (for a given vector q and at T = 0) is non-zero only for
frequencies satisfying

q2

2m
−

kFq

m
< ω <

q2

2m
+

kFq

m
, (59)

which defines a region between two parabolas

• perturbations with δṼ (q, ω) 6= 0 for (q, ω) inside this
region are accompanied by energy dissipation



Spectrum of particle-hole excitations of the jellium model
[region of non-zero imaginary part of χ̃0(q, ω)]
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ω

q / kF



3 Response of homogeneous electron liquid

3.1 Hartree approximation and interacting susceptibility

• a complete inclusion of the electron-electron interaction in
the response properties requires the general formalism of
sections 1.1 and 1.2 (intractable exactly)

• a mean-field-like alternative is the Hartree approximation:
the original relation δ̺ = χ0 ∗ δV is employed, but with
replacement of the local perturbing potential δV (r, t)
by an effective total potential δVtot(r, t) given by

δV (r, t) → δVtot(r, t) = δVext(r, t) + δVH(r, t) , (60)

where: δVext – the external (applied) potential,
δVH – the Hartree term due to the induced density

change δ̺ (classical electrostatics):



δVH(r, t) = e ′2
∫

δ̺(r′, t)

|r− r′|
d3r′ , e ′2 ≡

e2

4πǫ0
. (61)

The Hartree term – analogy to the Weiss molecular field.

• this leads to relations between the Fourier transforms:

δ ˜̺(q, ω) = χ̃0(q, ω) δṼtot(q, ω) ,

δṼtot(q, ω) = δṼext(q, ω) + δṼH(q, ω) ,

δṼH(q, ω) = Ũ(q) δ ˜̺(q, ω) , (62)

where

Ũ(q) =

∫

exp(−iq · r)
e ′2

r
d3r =

4πe ′2

q2
(63)

is the Fourier transformation of the Coulomb interaction
(r ≡ |r|, q ≡ |q|)



• Eqs. (62) yield a closed linear relation for the induced
density change:

δ ˜̺(q, ω) = χ̃0(q, ω)
[

δṼext(q, ω) + Ũ(q) δ ˜̺(q, ω)
]

,

which leads to the final expression

δ ˜̺(q, ω) = χ̃(q, ω) δṼext(q, ω) , (64)

where

χ̃(q, ω) =
χ̃0(q, ω)

1− Ũ(q) χ̃0(q, ω)
(65)

is the interacting (full, renormalized) susceptibility

• Eq. (65) bears a general form of a renormalization of the
non-interacting susceptibility due to the interaction



• analogy with the susceptibility of a ferromagnet in the
mean-field approximation for the classical Ising model:

s̄ = tanh[β(b + J s̄)]

◮ the susceptibility of a single isolated spin (J = 0) is
(the Curie law)

χ0(T ) = β =
1

kBT

◮ the high-temperature susceptibility of the ferromagnet
(the Curie-Weiss law) can be written as

χ(T ) =
1

kBT − J
=

χ0(T )

1− J χ0(T )



3.2 Relation to dielectric constant

• the external perturbing potential δVext(r, t) is usually
created by means of the density δ̺ext(r, t) of a classical
external charge, so that

δVext(r, t) = e ′2
∫

δ̺ext(r
′, t)

|r− r′|
d3r′ ,

δṼext(q, ω) = Ũ(q) δ ˜̺ext(q, ω) ,

which yields [according to Eq. (64) and Eq. (65)] the induced
electron density in terms of the external density as

δ ˜̺(q, ω) =
Ũ(q) χ̃0(q, ω)

1− Ũ(q) χ̃0(q, ω)
δ ˜̺ext(q, ω) (66)



• the change of the total (induced and external) density

δ̺tot(r, t) = δ̺(r, t) + δ̺ext(r, t)

due to the external density is

δ ˜̺tot(q, ω) =
1

1− Ũ(q) χ̃0(q, ω)
δ ˜̺ext(q, ω) (67)

• in a homogeneous and isotropic medium, the electric
field intensity (E) / induction (D) is generated by
the total (δ̺tot) / external (δ̺ext) density of electric charge:

ǫ0E = ǫ−1
r D =⇒ 1− Ũ(q)χ̃0(q, ω) ≡ ǫ̃r (q, ω) , (68)

which defines the relative permittivity (dielectric constant) of
the electron liquid in a random-phase approximation (RPA) or
in a self-consistent-field (SCF) method



3.3 Static screening of external charge

• the electron density induced by a static (ω = 0) external
charge density is given by

δ ˜̺(q, 0) = − K̃ (q) δ ˜̺ext(q, 0) , (69)

where the quantity K̃ (q) describes a screening cloud of
electrons around the perturbing classical external charge.
It is given according to Eq. (66) by

K̃ (q) = −
Ũ(q) χ̃0(q, 0)

1− Ũ(q) χ̃0(q, 0)

=
1

1− Ũ−1(q) χ̃−1
0 (q, 0)

. (70)



• for small values of q (q ≪ 2kF ), one can employ Eq. (57)
and Eq. (63) to approximate Eq. (70) by

K̃ (q) ≈

(

1 +
q2

4πe ′2
π2

mkF

)−1

=
1

1 + λ2TF q
2

≡ K̃TF (q) , λTF =

√

πa0
4kF

, (71)

where K̃TF (q) – Thomas-Fermi screening kernel in reciprocal
space and λTF – Thomas-Fermi screening length (≃ a0)

• the Thomas-Fermi screening kernel is applicable to static
external charge densities with very slow spatial variations;
its real-space representation is (screened Coulomb potential)

KTF (r) =
(

4πλ2TF r
)−1

exp (−r/λTF ) (72)



The SCF (full lines) and Thomas-Fermi (dashed lines)
screening kernels for the jellium model with kFa0 = 1

K̃ (q), K̃TF (q) and K (r), KTF (r)
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• properties of the full (RPA, SCF) screening kernel K̃ (q),
Eq. (70), and of its real-space counterpart K (r):

◮ for q ≪ 2kF , the full screening K̃ (q) can be replaced
by the Thomas-Fermi screening K̃TF (q)

◮ it holds K̃ (0) = 1 and
∫

K (r)d3r = 1 =⇒ an external
charge is fully screened by the induced electron cloud
(similarly to the Thomas-Fermi screening)

◮ the divergence of ∂χ̃0(q, 0)/∂q for q = 2kF leads to a
divergence of ∂K̃ (q)/∂q =⇒ K (r) also contains the
Friedel-like oscillations for r →∞
(in contrast to the Thomas-Fermi screening)

◮ for q →∞, the asymptotics of the full screening is
K̃ (q) ∼ q−4 =⇒ K (r) remains finite for r → 0
[in contrast to the divergence of KTF (r) for r → 0]



3.4 Dynamical response and plasmons

• let us investigate the response functions at T = 0 for
|q| = q → 0 and ω > 0 (strictly for kFq + 1

2
q2 ≪ mω)

• the non-interacting susceptibility, Eq. (55), can be written
[using (ω + h)−1 ≈ ω−1 − ω−2h for |h| ≪ ω ] as

χ̃0(q, ω) =
2

(2π)3

∫
(

1

ω + E k − E k+q

+
1

−ω + E k − E k+q

)

f k d
3k

≈
2

(2π)3
ω−2

∫

2 (E k+q − E k) f k d
3k

=
q2

mω2

k3
F

3π2
=

̺q2

mω2
, (73)



where the kF – ̺ relation, Eq. (51), was used

• the SCF-permittivity, Eq. (68), can be written as

ǫ̃r (q, ω) = 1−
4πe ′2

q2

̺q2

mω2
= 1−

e2̺

ǫ0m

1

ω2
; (74)

the zero of ǫ̃r (q, ω) (and the corresponding pole of the
interacting susceptibility) occurs at a frequency

ω =

√

e2̺

ǫ0m
≡ ωpl , (75)

where ωpl denotes the classical plasma frequency

¶ a pole in the susceptibility ←→ an excited state



• the pole in the susceptibility points to a collective excitation
of the homogeneous electron liquid – the plasmon

• more accurate treatment
=⇒ ω(q)

(plasmon dispersion law)

• the plasmon mode for
bigger values of q merges
into the continuum of the
particle-hole excitations

 0
 0  1  2  3  4

ω
q / kF

• the plasmon energy: ~ωpl ≈ (kFa0)
3/2 × 18 eV

=⇒ activation by elevated temperatures is inefficient,
interaction with high-energy particles is needed



• a simple derivation of the classical plasma frequency:

◮ electrons (mass m, charge e,
uniform density ̺)

◮ fixed charge-compensating
homogeneous background

◮ the restoring force propor-
tional to the displacement
=⇒ harmonic vibrations

+

+

+

+

+

-

-

-

-

-


