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0 Equilibrium quantum statistics

0.1 Quantum-mechanical and statistical averaging

e basic statements of the quantum theory:

» the pure state of a quantum-mechanical system is defined
by a state vector |W) in the Hilbert space

» a real physical observable is represented by a Hermitian
operator A

» the quantum-mechanical average of the quantity (operator)
A in the state |V) is given by

AV} = (V[AV), (1)

where we assume the state vector normalized to unity,
(V|v) =1



e if the system can be prepared in several states |V;)
with probabilities p; (j=1,2,...; p; >0, ZJ. p; =1),
the quantum-mechanical and statistical average is given by

W) = A= 3 p WA = 3 THAW)W)

= TF{A [Z pi V) (Vj]

where Tr denotes the trace and where we introduced the
density matrix (statistical operator) p given by

p = Z V) b (Wl (3)

} = Tr(Ap), (2)

which is a positive-definite Hermitian operator



e (two technical notes)

» within the Dirac formalism, a ket-vector |¢) and
a bra-vector (x| define a linear operator |¢)(x];

its action is given by [1) — |¢p)(x|¥);
its trace equals the scalar product of both vectors:

Tr(lo)(x]) = (xlo)
» for any operators X and Y: Tr(XY) = Tr(YX)

e the density matrix satisfies relations
Tr(p) =1,  Tr(p?) < 1, (4)
where the former one is a direct consequence of (W;|W;) =1

and Zj p; = 1; the equality sign in the latter relation is
encountered only for pure states



0.2 Quantum canonical distribution

e the canonical distribution (Boltzmann statistics) for a system
with Hamiltonian H and at temperature T is defined as

1

§T) = g7 @0(-5H), 5)

where 3 = (kg T)™! and the partition function Z(T) is given
by
Z(T) = Tr{exp(=fH)} (6)

o if the eigenvalues and normalized eigenvectors of H are
denoted by E, and |n) (n=1,2,...), we get for Z(T)

Z(T) = exp(—BE,), (7)

n



for the density matrix p and its matrix elements pp,,

AT = STy ol () = T

pmn(T) = {m|p(T)[n) = wn(T)dmn, (8)

and for the general quantum-mechanical and statistical
average (with matrix elements A, = (m|A|n))

(A(T) = A(T) = Tr{Ap(T)} = > wa(T){nlAn)

n

= Y M = 5 X o0l —IE) A (9

n

which has the form of Eq. (2) [A = > PV A[Y;) ]



e (a technical note)

if we know all eigenvalues E, (n=1,2,...) and normalized
eigenvectors |n) of the Hamiltonian H, we can write its
spectral representation

H_ZE\ Z|

this representation allows us to extend an arbitrary function
f(x) of a real variable x to the same function of the operator

H:
= S AE) Il = Y In) F(E

this definition can be used, e.g., for f(H) = exp(—(H)



e from the partition function Z(T), other quantities [internal
energy U(T), free energy F(T), entropy S(T), heat capacity
C(T)] can be obtained in the same way as in the classical
case; this leads, e.g., to expressions

uir) = —%In[Z(T)], F(T) = —%In[Z(T)], (10)
st = -2~ Ty ()

- _kB ZW,,(T)'H[W,,(T)], (11)

o(T) = ou(T) _ TM B _T02F(T) (12)

oT orT oT?



e the relations involving derivatives with respect to an external
parameter ¢ of the Hamiltonian H(&) require more effort in
the quantum case, since the operators H(&) and 0H(&)/0¢
do not commute in general. It can be proved that

while in the special case of a linear £&-dependence
H(&) = Hy+&B, £§—0, (14)
we get
(B)(1) = =0, (15)

these relations coincide with their classical counterparts.



0.3 Quantum ideal gases

e systems of non-interacting particles: ideal gases;
in the quantum case:
identical particles are indistinguishable

e two different classes (according to symmetry of wave-
function W with respect to permutation of two particles):

» bosons — W symmetric,
integer spin (photons, phonons, magnons, .. .)

» fermions — W antisymmetric (Pauli exclusion principle),
half-integer spin (electrons, protons, neutrons, .. .)

e many-particle systems in contact with surroundings:
» varying energy — temperature T
» varying no. of particles — chemical potential



e for an ideal gas, its Hamiltonian H on the many-particle
Hilbert space is determined by a one-particle Hamiltonian H,

M
H=> INEW, (16)

where |A\) and E, (A=1,2,..., M) are normalized
eigenvectors and eigenvalues of H

o the eigenstates of H (and the orthonormal basis in the
many-particle Hilbert space) are given by

S{a)y @) e ... @)} = [{mhl), (17)

where: N (N =0,1,2,...) — total number of particles,
S — (anti)symmetrization including normalization,
ny — occupation numbers



for bosons: ny €{0,1,2,...}
for fermions:  ny € {0,1} (18)

e the total number of particles in a particular eigenstate,
Eq. (17), is equal to

M
Ninyy = Z D) (19)
A=1

and the corresponding eigenvalue of H is

M
Enyy = D mEs (20)
A=1



e let us consider a general one-particle operator A,

M
A= INALEL Aw = NAp): (21)

this operator leads naturally to its counterpart A acting
on the many-particle states as follows:

A{Ad) @A) @ ... ® | An)}
= (AA))® X)) ® ... @ |An)
+ A @ (AN))® ... @A)
+ ..
+ M) @)@ ... @A) (22)

examples of A//N4: kinetic energy, magnetic moment, spin, ...



e (a comment on second quantization)
in terms of creation (ay) and annihilation (a,) operators,
the extended operators H and A can be written as

M M
H = E Eyayay, A = E Ayaya,
A—1

Av=1

e the quantum-mechanical averages of A in the eigenstates
of H are given by

M M
{mBL | A{mIL) = 2_: mAMN = 2_: M(A[AIN),  (23)

which has an obvious physical meaning



e in order to get the quantum-mechanical and statistical
average of A, we need the statistical averages of the
occupation numbers ny at a given temperature T and
chemical potential

e the probability of a particular value ny o exp[B(px— Ex)n,],
which yields the average occupation number (n,) as

1
exp[B(Ex — p)] F 1

This is the well-known Bose-Einstein or Fermi-Dirac
distribution function (BE — upper sign, FD — lower sign).

(n)(T,p) = = (T, ). (24)




e Bose-Einstein / Fermi-Dirac distribution functions

1
( ) exp[B(E — p)] F 1
f '\\ ¢
‘\ BE FD
\\ 1o -
' \
' \
. 1/24 e \
0 —=== 0 LS
K E /

(25)



e the quantum-mechanical and statistical average
of the observable A follows from Eq. (23) and Eq. (24):

M M
A(T,u) = Z A (m)(T, 1) = Z AAB(T, 1), (26)

A=1 A—=1
with an obvious physical meaning; this result can be recast as

M
A(T.p) = > NAN AT, 1) = T{AF(T, 1)}, (27)

A=1

where the trace refers to the one-particle Hilbert space
and where we introduced a one-particle density matrix

M
F(T.m) =D INAT 1) (A (28)



1 Kubo linear response theory

1.0 Introduction

» the isothermic susceptibility refers to quasi-static
perturbations (very slow changes of the Hamiltonian):
the system remains in full thermodynamic equilibrium

» the Kubo theory describes an opposite limit:
the perturbation and the response vary in time;
full equilibrium only before the perturbation is switched on;
the interaction system—surroundings is completely neglected
during the process = 'adiabatic’ response

» despite this simplification, the Kubo theory proved very
useful and successful for a wide class of problems

» here: basic properties of (non-)interacting electrons within
a simple model and using a mean-field-like approximation



1.1 General formulation

e let us consider a time-independent Hamiltonian H, of a
quantum-mechanical system (in contact with surroundings)
and let as add a small time-dependent perturbation

Hi(t) = Bexp(—iwt +nt) + BT exp(iwt + nt), (29)

where B is an operator and 7 — 0T, so that the total
Hamiltonian
H(t) = Ho + Hi(t) (30)

coincides with Hp in very distant past (t — —o0)
e this setup corresponds to a slow (on a microscopic time

scale) switching on the perturbation added to the original
unperturbed time-independent Hamiltonian Hy



e the equilibrium density matrix at temperature T
[with 5 =1/(kgT)] is

po = Zep(—0H),  Z = T{en(—0H)} (3)

in the basis of eigenvectors |m) of the Hamiltonian Hy with
eigenvalues E,,, the matrix elements of py are given by

1
(mlpoln) = G, W = Zep(—0E).  (32)

the partition function is equal to Z =) exp(—S8En)
and the operator pq is explicitly given by

po = Im) wn (m| (33)



e let us investigate the time evolution (A = 1) due to the total
Hamiltonian H(t) of states |W,,(t)) and of the density matrix

1) = Y [War(t)) win (Vin(2)], (34)

which satisfy following initial conditions for t — —o0:

exp(iEmt)[Wr(t)) — [m),  p(=00) = po (35)

e physically, this procedure corresponds to a complete neglect
of the interaction between the studied system and its
surroundings during the switching on the perturbation H;(t)
(this interaction is responsible for bringing the system into
thermodynamic equilibrium at temperature T for t = —o0)

—> 'adiabatic’ (mechanical) response



e the Schrodinger equation (A = 1) for the states |W,,(t)),

.0
i Vm(t)) = H(t)[Vn(t))

leads to the Liouville (von Neumann) equation for the density
matrix p(t),

o,
iogP(t) = [H(t), p(t)], (36)
where [A, B] = AB — BA denotes the commutator

e let us write the total density matrix in a form

p(t) = po+p(t),  pi(—o0) =0, (37)

where p;(t) is considered as an infinitesimally small correction
to po due to the perturbation Hy(t)



e this yields (with keeping only linear terms)

0

i52p1(t) = [Ho + Ha(2), po + pr(t)] = [Ho, pr(£)] + [Ha(t), po]

and finally a differential equation for the p1(t),

f%pl(t) +[oa(t), Hol = [H(t), pol

= [B, po]exp(—iwt +nt) + [BT, po] exp(iwt +nt). (38)
The latter can be solved by using an Ansatz
p1(t) = oexp(—iwt + nt) + oF exp(iwt + nt), (39)

where o is a time-independent operator (matrix).
Substitution of this Ansatz into Eq. (38) leads to

i(—iw+n)o + [o, Ho] = [B, po] (40)



and to an equivalent (Hermitian conjugate) relation.
e the solution of Eq. (40),
(UJ + ”7)0 + [J? HO] = [Ba PO] )

can be done in the basis of the eigenstates of H,
(with (n|o|m) = opm, (n|B|m) = B,n). One obtains:

(W + in)Unm + Unm(Em - En) — Bnm(Wm - Wn)a

which provides the final result in a form

B Wm — Wy
"o+ in+ En—E,

Onm =



1.2 Generalized susceptibility and Kramers-Kronig
relations

e a physical quantity of the system, given by the statistical
average of a Hermitian operator A, depends on time as

A(t) = Tr{Ap(t)} = Ao+ Al(t),
Ay = Tr{Apo},  Au(t) = Tr{An(1)},
where the (infinitesimally small) time-dependent term is
Ai(t) = Tr{Ao}exp(—iwt +nt) + c.c.
= ZAm,,a,,m exp(—iwt +nt) + c.c.

mn

= xag(w)exp(—iwt +nt) + c.c., (42)

where c.c. denotes a complex conjugate term



e the quantity yag(w) is the generalized (Kubo) susceptibility
that is explicitly given by

W, — W,
Amn By ———" " 43
Xag(w Z TwiEE W

The limit n — 0T is implicitly assumed in Eq. (43).

e the susceptibility xag(w) is a complex number; its
magnitude describes the strength of the response while its
phase refers to the phase shift between the periodic
perturbation Hy(t) and the induced response A (t)

e the susceptibility xag(w) consists of terms that exhibit
singular behavior for frequencies w = E, — E,,, i.e., for
frequencies corresponding to excitation energies of the system



e an example: a system at T =0 with a non-degenerate
ground state (|0), Eo)
— wp =1 (ground state),
w,=0 for n=1,2,... (excited states),
which yields:

+oo
AonBs AnoBon
XAB(W) _ Z( 0 0 _ 020 )

p— w+in+ Ey— E, w4+ in+ E, — Ey

— poles at the excitation energies w=E, — Ey (n>1):
€ a pole in the susceptibility +— an excited state

9 weights of the singular terms: selection rules for Ag,, Bon



e the limit » — 0" in yag(w) can be perfomed using the

relation
1 1

i = p- F ind 44
M x5 T im0, (44)

where x is a real variable, ¢ denotes the principal value,
and 6(x) is the Dirac d-function; this relation means

+00 +oo
lim / cp(x) = l|im (/ / )
n—0t J_ X+ 177 n—0+

— imp(0

for smooth functions ¢(x) rapidly decaying for x — +oo ;

— p/ x"tdx = In|a/b| forb<0<a
b



e decomposition of the susceptibility in two terms:

xaslw) = lig, Xm: AmBm 55 %er_EV,:n— E,

= Xad(w) + iR (w),
Xap(w) = %: A Bam (Wm — wh) @wE;m—En :
Xf,)g(w) = -7 ZAm,,B,,m (Wm — wy)0(w+ En — E),

(45)
where yUW)(w) - dispersive part,

Xf;(w) — absorptive part



e notes on the absorptive part:
> for B=A= A", we get:
2
Xaa(®) ~ Y | Al (Win — wn) 6( + Eny — E,)

> ij\(w) coincides with the imaginary part of xaa(w)

» close relation to the Fermi golden rule: probability (per
unit time) of transitions between two eigenstates |m) and
|n) of Hyis ~ |Amnl?0(w + En — E,)

> the rate of energy dissipation/absorption by the system

due to the time-dependent perturbation is ~ wxfz‘(w)

» analogy with classical electric circuits:
the Joule's heat is due to resistivity R — the real part
of the impedance Z(w) = R + i[Llw — (Cw)™!]



e each of both parts of the susceptibility can be expressed by
means of the other part using the Kramers-Kronig relations:

1 < 1
W) = 2o [ @0,
1 o
@ = s dow, @)

provided that the integrals on the r.h.s. converge

e these relations reflect the causality between a general
time-dependent perturbation and the resulting response:

t
:/ Flt, t' A Ho, Hi(t)] dt/

(integration only over t' < t)



e (proof of the Kramers-Kronig relations)
The first of Eq. (46) can be proved using Eq. (45)
and the well-known property of the d-function, namely
[0 8(x)8(x —x1)dx = g(x1)
while the second of Eq. (46) can be obtained from an identity

S 1 ,
o) o dx = 7 (x1 — x2) .
— 00 X — X1 X — X2

The latter follows from Eq. (44) and from integrals:

/Oo 1 1 q 27
- —dx = - ,
—oo X T XL — ML X — X2+ N2 x1 — X2 4 i(n1 4+ 1n2)

© 1 1
- —dx = 0,
—oo X = XL 1IN X — X2+ 112

where xj, x are real and 01,1, are positive.




1.3 Fluctuation-dissipation theorem

e a relation between the Kubo susceptibility and the correlation of

time-dependent fluctuations in the unperturbed system

e in classical statistics — autocorrelation of particle velocity v,:

(ve) =0 vs. M(t) = (vi(t)v(0)) # 0
Vx Iy
n
/N . I"\




e for a quantum system with an unperturbed Hamiltonian Hy and
for a Hermitian operator A, we introduce (Heisenberg picture)

A(t) = exp(iHot) A exp(—iHot)
and define the corresponding autocorrelation function as

TA(t) = SIAMA T AAD) = 3 Tr{po[A(DA + AA(D]}, (47)

where pg = Z lexp(—BHp), Z = Tr{exp(—BHo)}

o for the Fourier transformation of ' 4(t), defined by
Fa(w f+oo exp(iwt) Ma(t)dt ,

one can prove the fluctuation-dissipation theorem:

Fali) = —coth( 5 ) x2) (48)



e proof of Eq. (48): In the basis of eigenvectors of Hp, we get

FA@) = 7Y VAmnl? (W + W) 800+ Enm — Ez)
where we employed the identity f_t;o exp(iQt)dt = 2w6(RQ).
According to Eq. (45) we have

2

XA(©) = 7 X (A (Wi — w0) 60 + Enp — Ep)
With the use of the identity

Wm 0(w + Em — Ep) = exp(Bw) wy 6(w + Epy — Ep)

we get relations

MNa(w) = 7[1+ exp(Bw)] Z |Amn|? Wn 6(w + Em — Ep),

Xaw) = 71— exp(Bw)] D |Amn|? Wa 0w + Em — En),

from which the validity of Eq. (48) can easily be seen.



e relation to classical electric circuits:

the macroscopic measurement of the impedance

Z(w) = R+ i[Llw — (Cw)™'] at temperature T provides an
information about the microscopic equilibrium thermal noise,
the so-called Johnson-Nyquist noise due to the current and
voltage fluctuations (present in circuits without an external
source)



1.4 Non-interacting many-particle systems

e the linear response theory for non-interacting many-particle
systems with A and B being one-particle operators can be
formulated entirely in terms of the one-particle Hamiltonian
H(t) = Ho + Hi(t)

e eigenvectors and eigenvalues of Hy: |\), |[v) and E,, E,;
the equilibrium one-particle density matrix f is given in terms
of average occupation numbers f, as

1
= ;IM AL A= exp[B(Ex — p)] £ 17

where o is the chemical potential of the particles and
(+/—) refers to fermions/bosons



e the resulting generalized non-interacting Kubo susceptibility
is given by

f)\_fy
w—|—i7]—|—E)\—Ey

Xag(w) = ZA)\VBV)\ (49)

» the same formal structure as the general result, Eq. (43)

» |\),|v) and fy,f, instead of |m),|n) and wy,, w,
» Eq. (49) employs the one-particle Hilbert space

e the susceptibility xas(w) consists of terms that exhibit
singular behavior for frequencies w = E, — E,, i.e., for
frequencies given by excitation energies of the one-particle
Hamiltonian. These frequencies correspond to the so-called
pair excitations of the non-interacting many-particle system.



e for a many-fermion system at T = O:
fh=1 for E\ < Ef, fL=0 for E\ > Ef,
where Ep — the Fermi energy (EfF = p for T =0)

Ex

— the xas(w) consists of

terms connecting an occupied /;\
state with an unoccupied state
(particle-hole excitations) E

» this scheme explains various electronic properties of solids
(optical conductivities, el. and magn. susceptibilities, ...)



2 Response of homogeneous electron gas

2.1 Jellium model

e atomic nuclei of a solid are replaced by a positively charged
classical homogeneous background on which electrons move

e we consider non-interacting electrons in a constant potential.

The unperturbed one-particle Hamiltonian is (7 = 1):
A
Hy = — — 50
0 o'm ) ( )

where m is the electron mass;
its eigenvectors are labelled by the reciprocal-space vector k:

k2
" 2m

exp(ik - r)
(27)?

(electron spin ignored — sometimes a factor of 2 added).

) LK), () . Ex...Ex



e the jellium model is specified by a single parameter — the
homogeneous density o (no. of electrons per unit volume);
for T =0, the occupied states are for |k| = k < kf,

where kg — the Fermi-sphere radius, related to Ef and o:

k2
Er = ﬁ ke = /3720 (51)

e values of kg for simple metals
(Li, K, Mg, Ca, Al, ...):

0.4 S kFao < 1
[ap = 1/(me”?) — Bohr radius (h = 1)
and €? = e?/(4me)]



2.2 Non-interacting susceptibility of jellium

e as the perturbation, we consider an infinitesimal time- and
space-dependent local potential dV/(r’,t') which leads to
infinitesimal changes of the electron density do(r, t)

e the most general form of the linear response is given by

t
So(r.t) = / / YoV, £ ) V(Y £) d¥ de (52)

e the unperturbed state of jellium is homogeneous in space and
time = xo(r, ¥, t,t') = xo(r — ¢, t — t') and Eq. (52) can
be simplified by the Fourier transformation (r — q, t — w):

5@((],(4)) = )’Zo(q,(xJ)&V(q,UJ), (53)



where  63(q,w) = [[exp(—iq-r+ iwt)do(r,t)d*rdt
and similarly for §V/(q,w) and ¥o(q,w), and where

. 2 fk — fitq 3
= k 4
Xo(q>w) (271')3 / W+ ”7 + Ek _ Ek+q d (5 )

denotes the non-interacting (bare, unrenormalized)
susceptibility of the homogeneous electron gas

e a closed analytic formula w| Y >0,g—0
for XO(qaw) = 5(’0((%("]) E

: <
exists ( here g =q|) — w=0
(Lindhard function — - o
— not too transparent) 0 i » .

o
Q



e proof of Eq. (54):

We identify |)\),|v) with |k),|k’). The w-component of the local
perturbing potential dV/(r,t) leads to the matrix elements

B,» = (2m)38V(K' — k,w). The Fourier transformed electron
density corresponds to the local operator exp(—iq-r)o(r —r') and
its matrix elements are Ay, = 25(k’ — k — q), where the factor of
2 accounts for the electron spin and where we used the identity
[exp(iQ - r)d®r = (27)35(Q). The quantity 63(q,w) can be
identified with xag(w), Eq. (49), and it is explicitly given by

do(quw) = 2(2m)” //5 —k—q)dV(K —k,w)
f fk/
w—l—m+Ek—Ek/

3 - fk — fit
= 2(2n)36V(q, / : q d3k,
(2m) (q,w) o+ i+ Ex — Expq

d*k d3k’

which coincides with Eq. (53) and Eq. (54).



e (a technical note on the k-integration)
§ original integration region for Xo(q,w) — two Fermi spheres

for g > 2kg for g < 2kg

§ with substitution k - —k —q ( fx < fkyq ., Ex <> Ektq )
we obtain

~ 2 1
fo(a,w) = (271)3/<w+i7]+Ek—Ek+q
1
~w— i+ Ex — Exiq

) fid®k  (55)

(integration over a single Fermi sphere)



2.3 Properties of non-interacting susceptibility
e in the static limit (w = 0), Eq. (55) and Eq. (44) yield
~ 4 fk 3
0) = d’k
XO(q> ) (271')3 {Q/ Ek — Ek+q )

which shows that the static susceptibility is real. We get:
—2m

- _ k%dk 0df ————
Xo(a,0) 2 )3 p/ / sin 2ch059+q2
ke
k-dk d
/ / u2kqu+q
m 2k +q
- = kdkl —
72q Jo ‘ —2k + ‘
2kr/q
mq y+1
— M I
472 J, Yo _1‘dy,

where we substituted cosf = u and k = qy/2.



e let us introduce a special function F(x) defined for x > 0 as

L[| tt -1 |x+1
(x) X/Oyn' _l‘y + nx—l‘ (56)
2 . .
Its properties:
F(x) » for x — 0: F(x)~2x2/3
Y » for x — +o0:
Ly 1 F(x) ~ 2 — 2/(3x2)
\
> F(1)=1 and F/(1) = +o0
F(1/x) (infinite derivative)
R » forall x: F(x)+ F(x1)=2
0 \
0 1 2 3



e the resulting static non-interacting susceptibility in the reciprocal
space is
mk/: 2/(,:
% 0) = ——==F|— 57
XO(qv ) 272 < q > ) ( )
and its real-space counterpart is (|r| = r)
w0 = @0 [evlia-n) to(a.0)da

_ (2:)3 (2kfr) cos(2k,:r2) — sin(2krr) (58)

e the most important features of these functions are:
» infinite derivative of Xo(q,0) at g = 2kg
('touching Fermi spheres’)

» oscillatory behavior of xo(r,0) for r — oo with a period 7/kfr
and an amplitude decaying as r—3 (Friedel oscillations)



Xo(d)

Static non-interacting susceptibility of the jellium model:

Xo(q,0) and Xo(r,0)

Xo(n)




e experimental verification of the Friedel oscillations:

» variations of local quantities induced by defects:
non-monotonic dependence on distance from the defect

» in magnetism: the RKKY interaction between localized
magnetic moments mediated by the conduction electrons

Iocal_
00 00O quantity
O0O0O0O0 +
O O O O O ..................... +++
+
OO0 @00 +
o O O O O +
o O O O O

distance from impurity



e for w >0, the imaginary part of Yo(q,w) is according to
Eq. (55) and Eq. (44) given by

N / [6(w + Ex — Exa) — 0(w — Ex + Erq) ] fidk.

which (for a given vector g and at T = 0) is non-zero only for
frequencies satisfying

——— < w< —4+—, (59)

which defines a region between two parabolas

e perturbations with 6\7(q,w) # 0 for (g,w) inside this
region are accompanied by energy dissipation



Spectrum of particle-hole excitations of the jellium model

[region of non-zero imaginary part of Xo(q,w)]

DA



3 Response of homogeneous electron liquid

3.1 Hartree approximation and interacting susceptibility

e a complete inclusion of the electron-electron interaction in
the response properties requires the general formalism of
sections 1.1 and 1.2 (intractable exactly)

e a mean-field-like alternative is the Hartree approximation:
the original relation do = yo * 0V is employed, but with
replacement of the local perturbing potential §V/(r, t)

by an effective total potential 0V (r,t) given by

oV(rt) = Viee(r, t) = Veu(r, t) +0Vy(r, t), (60)

where:  §V, — the external (applied) potential,
0Vy — the Hartree term due to the induced density
change do (classical electrostatics):



do(r', t) e?
5\/ t) = 2 ) d3 / 2 = ) 61
H(r. ) € lr —r'| " € 47eg (61)

The Hartree term — analogy to the Weiss molecular field.

e this leads to relations between the Fourier transforms:

5@’((]7("]) = iO(qaw)é\N/tot(qaw)a
5\7tot(q7w) = 5\7ext(q7w)+5\~/H(q7w)7

0Vi(a.w) = U(a)ds(a.v), (62)

where " "
- e 4re
U(q) = —iq-r)—d’r =
(a) / exp(—iq -r) — 7
is the Fourier transformation of the Coulomb interaction
(r=1rl, g=lal)

(63)



e Eqgs. (62) yield a closed linear relation for the induced
density change:

06(a,0) = To(a,w) [0 Vex(@.w) + U(@) 06(a, )|

which leads to the final expression

5@((],0)) = )Z(q,w)évext(q>w) ) (64)

where (. 0)
. q,w
Ua,w) = —=

1— U(q) 5('0(% w)
is the interacting (full, renormalized) susceptibility

e Eq. (65) bears a general form of a renormalization of the
non-interacting susceptibility due to the interaction



e analogy with the susceptibility of a ferromagnet in the
mean-field approximation for the classical Ising model:

5 = tanh[5(b+ J5)]

» the susceptibility of a single isolated spin (J = 0) is
(the Curie law)

1
XO(T):BZ kB—T

» the high-temperature susceptibility of the ferromagnet
(the Curie-Weiss law) can be written as

B 1 ~ xo(T)
M) = 7 =7 ~ 1= 7w




3.2 Relation to dielectric constant

e the external perturbing potential Ve (r, t) is usually
created by means of the density 0gex(r,t) of a classical
external charge, so that

WVoe(r,t) = e’2/5QL(r/’t)d3r/
ext\'>» |r_r,‘ )

6Vext(q7w) = U(q)ééext(qaw)a

which yields [according to Eq. (64) and Eq. (65)] the induced
electron density in terms of the external density as

() %o(a,w)
1 — U(q) Xo(q,w)

5@((], w) = 5§ext(q7 w) (66)



e the change of the total (induced and external) density
6Qtot(r7 t) = 5@([’, t) + 6Qext(r7 t)
due to the external density is

~ o 1 ~
5gtot(q,w) = 1_ U(q) Xo(q’w) 5Qe)(l’(cla("}) (67)

e in a homogeneous and isotropic medium, the electric
field intensity (E) / induction (D) is generated by
the total (Jo:0:) / external (Joex) density of electric charge:

€OE = Gr_lD — 1-— U(Q))Zo(q,w) = gr((:]7("])7 (68)

which defines the relative permittivity (dielectric constant) of
the electron liquid in a random-phase approximation (RPA) or
in a self-consistent-field (SCF) method



3.3 Static screening of external charge

e the electron density induced by a static (w = 0) external
charge density is given by

08(q,0) = — K(q) 65exe(a,0), (69)

where the quantity R(q) describes a screening cloud of
electrons around the perturbing classical external charge.
It is given according to Eq. (66) by

- -~ (CI) Xo(q,0)
Kla) U(a) %o(a,0)
1

1—U(a) %' (a,0)




e for small values of g (¢ < 2kg), one can employ Eq. (57)
and Eq. (63) to approximate Eq. (70) by

2 2\ —
~ q s 1
K ~ 1 - - -
(a) ( T dnen mkF) 1+ \pq?
~ Ta
= l‘('r,:(q)7 )\TF - 4—/(27 (71)

where K7r(q) — Thomas-Fermi screening kernel in reciprocal
space and Arr — Thomas-Fermi screening length (=~ ap)

e the Thomas-Fermi screening kernel is applicable to static
external charge densities with very slow spatial variations;
its real-space representation is (screened Coulomb potential)

Kre(r) = (47220 1) " exp(—r/A7r) (72)



The SCF (full lines) and Thomas-Fermi (dashed lines)
screening kernels for the jellium model with krFag =1
R(Q)a RTF(q)

and K(r), Kre(r)
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e properties of the full (RPA, SCF) screening kernel K(q),
Eq. (70), and of its real-space counterpart K(r):

» for g < 2kr, the full screening f((q) can be replaced
by the Thomas-Fermi screening }N(TF(q)

> it holds K(0)=1 and [K(r)d> =1 = an external
charge is fully screened by the induced electron cloud
(similarly to the Thomas-Fermi screening)

» the divergence of 9%o(q,0)/0q for g = 2kg leads to a
divergence of 9K(q)/dg = K(r) also contains the
Friedel-like oscillations for r — oo
(in contrast to the Thomas-Fermi screening)

> for g — oo, the asymptotics of the full screening is
K(q) ~ g* = K(r) remains finite for r — 0
[in contrast to the divergence of K7g(r) for r — 0]



3.4 Dynamical response and plasmons

e let us investigate the response functions at 7 =0 for
laj=qg — 0 and w >0 (strictly for krq+ 3> < mw)

e the non-interacting susceptibility, Eq. (55), can be written
[using (w+ h) = w™ —w™2h for |h <w]as

o(a.0) 2 / 1
w =
Xo\ g, 27)3 ] \w+ Ex — Exaq
1
+ fd’k
—W+Ek—Ek+q) k

2
~ G 2/2(Ek+q—Ek)fkd3k
¢ ki oq

mw? 372 mw?’



where the kg — o relation, Eq. (51), was used
e the SCF-permittivity, Eq. (68), can be written as

. 4me”? oq? e?o 1
&(qw) =1— i :1_60—mﬁ; (74)

the zero of €,(q,w) (and the corresponding pole of the
interacting susceptibility) occurs at a frequency

[ e2p
w = - =w 75
com pl ( )

where wp denotes the classical plasma frequency

§ a pole in the susceptibility «— an excited state



e the pole in the susceptibility points to a collective excitation
of the homogeneous electron liquid — the plasmon

e more accurate treatment
= w(9)
(plasmon dispersion law) -

e the plasmon mode for 3
bigger values of g merges

into the continuum of the
particle-hole excitations

o 1 2 3 4
q/kg
e the plasmon energy: w,y ~ (krag)®/? x 18 eV
—> activation by elevated temperatures is inefficient,
interaction with high-energy particles is needed



e a simple derivation of the classical plasma frequency:

>

electrons (mass m, charge e,
uniform density o)

fixed charge-compensating
homogeneous background

the restoring force propor-
tional to the displacement
= harmonic vibrations




