Screening and plasmons in homogeneous electron liquid

I. Turek

Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic

turek@ipm.cz

April 13, 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

- 0) equilibrium quantum statistics
- 1) Kubo linear response theory
- 2) jellium model with non-interacting electrons

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

3) jellium model with interacting electrons

0 Equilibrium quantum statistics

0.1 Quantum-mechanical and statistical averaging

- basic statements of the quantum theory:
- \blacktriangleright the pure state of a quantum-mechanical system is defined by a state vector $|\Psi\rangle$ in the Hilbert space
- a real physical observable is represented by a Hermitian operator A
- the quantum-mechanical average of the quantity (operator) A in the state $|\Psi\rangle$ is given by

$$\bar{A}\{\Psi\} = \langle \Psi | A | \Psi \rangle, \qquad (1)$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

where we assume the state vector normalized to unity, $\langle \Psi | \Psi \rangle = 1$

• if the system can be prepared in several states $|\Psi_j\rangle$ with probabilities p_j $(j = 1, 2, ...; p_j \ge 0, \sum_j p_j = 1)$, the quantum-mechanical and statistical average is given by

$$\langle A \rangle = \bar{A} = \sum_{j} p_{j} \langle \Psi_{j} | A | \Psi_{j} \rangle = \sum_{j} p_{j} \operatorname{Tr} \{ A | \Psi_{j} \rangle \langle \Psi_{j} | \}$$
$$= \operatorname{Tr} \left\{ A \left[\sum_{j} p_{j} | \Psi_{j} \rangle \langle \Psi_{j} | \right] \right\} = \operatorname{Tr}(A\rho),$$
(2)

where Tr denotes the trace and where we introduced the density matrix (statistical operator) ρ given by

$$\rho = \sum_{j} |\Psi_{j}\rangle \, \rho_{j} \, \langle \Psi_{j} | \,, \tag{3}$$

which is a positive-definite Hermitian operator

- (two technical notes)
- within the Dirac formalism, a ket-vector $|\phi\rangle$ and a bra-vector $\langle \chi |$ define a linear operator $|\phi\rangle\langle \chi |$; its action is given by $|\psi\rangle \mapsto |\phi\rangle\langle \chi |\psi\rangle$; its trace equals the scalar product of both vectors: $Tr(|\phi\rangle\langle \chi |) = \langle \chi |\phi\rangle$
- for any operators X and Y: Tr(XY) = Tr(YX)
- the density matrix satisfies relations

$$\operatorname{Tr}(
ho) = 1, \qquad \operatorname{Tr}(
ho^2) \le 1,$$
 (4)

where the former one is a direct consequence of $\langle \Psi_j | \Psi_j \rangle = 1$ and $\sum_j p_j = 1$; the equality sign in the latter relation is encountered only for pure states

0.2 Quantum canonical distribution

• the canonical distribution (Boltzmann statistics) for a system with Hamiltonian H and at temperature T is defined as

$$\rho(T) = \frac{1}{Z(T)} \exp(-\beta H), \qquad (5)$$

where $\beta = (k_B T)^{-1}$ and the partition function Z(T) is given by

$$Z(T) = \operatorname{Tr}\{\exp(-\beta H)\}\tag{6}$$

• if the eigenvalues and normalized eigenvectors of H are denoted by E_n and $|n\rangle$ (n = 1, 2, ...), we get for Z(T)

$$Z(T) = \sum_{n} \exp(-\beta E_{n}), \qquad (7)$$

for the density matrix ρ and its matrix elements ρ_{mn}

$$\rho(T) = \sum_{n} |n\rangle w_{n}(T) \langle n|, \qquad w_{n}(T) = \frac{\exp(-\beta E_{n})}{Z(T)},$$

$$\rho_{mn}(T) = \langle m|\rho(T)|n\rangle = w_{n}(T) \delta_{mn}, \qquad (8)$$

and for the general quantum-mechanical and statistical average (with matrix elements $A_{mn} = \langle m|A|n \rangle$)

$$\langle A \rangle(T) = \bar{A}(T) = \operatorname{Tr}\{A\rho(T)\} = \sum_{n} w_{n}(T) \langle n|A|n \rangle$$

$$= \sum_{n} w_{n}(T) A_{nn} = \frac{1}{Z(T)} \sum_{n} \exp(-\beta E_{n}) A_{nn}, \quad (9)$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

which has the form of Eq. (2) [$\bar{A} = \sum_{j} p_{j} \langle \Psi_{j} | A | \Psi_{j} \rangle$]

• (a technical note)

if we know all eigenvalues E_n (n = 1, 2, ...) and normalized eigenvectors $|n\rangle$ of the Hamiltonian H, we can write its spectral representation

$$H = \sum_{n} E_{n} |n\rangle \langle n| = \sum_{n} |n\rangle E_{n} \langle n|;$$

this representation allows us to extend an arbitrary function f(x) of a real variable x to the same function of the operator H:

$$f(H) = \sum_{n} f(E_{n}) |n\rangle \langle n| = \sum_{n} |n\rangle f(E_{n}) \langle n|;$$

this definition can be used, e.g., for $f(H) = \exp(-\beta H)$

• from the partition function Z(T), other quantities [internal energy U(T), free energy F(T), entropy S(T), heat capacity C(T)] can be obtained in the same way as in the classical case; this leads, e.g., to expressions

$$U(T) = -\frac{\partial}{\partial\beta} \ln[Z(T)], \quad F(T) = -\frac{1}{\beta} \ln[Z(T)], \quad (10)$$

$$S(T) = -\frac{\partial F(T)}{\partial T} = -k_B \operatorname{Tr}\{\rho(T) \ln[\rho(T)]\}$$
$$= -k_B \sum_n w_n(T) \ln[w_n(T)], \qquad (11)$$

$$C(T) = \frac{\partial U(T)}{\partial T} = T \frac{\partial S(T)}{\partial T} = -T \frac{\partial^2 F(T)}{\partial T^2}$$
(12)

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• the relations involving derivatives with respect to an external parameter ξ of the Hamiltonian $H(\xi)$ require more effort in the quantum case, since the operators $H(\xi)$ and $\partial H(\xi)/\partial \xi$ do not commute in general. It can be proved that

$$\left\langle \frac{\partial H(\xi)}{\partial \xi} \right\rangle (T) = \frac{\partial F(T;\xi)}{\partial \xi},$$
 (13)

while in the special case of a linear ξ -dependence

$$H(\xi) = H_0 + \xi B, \qquad \xi \to 0, \qquad (14)$$

we get

$$\langle B \rangle_0(T) = \frac{\partial F(T; \xi = 0)}{\partial \xi};$$
 (15)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

these relations coincide with their classical counterparts.

0.3 Quantum ideal gases

• systems of non-interacting particles: ideal gases; in the quantum case:

identical particles are indistinguishable

- two different classes (according to symmetry of wavefunction Ψ with respect to permutation of two particles):
- bosons Ψ symmetric, integer spin (photons, phonons, magnons, ...)
- fermions Ψ antisymmetric (Pauli exclusion principle), half-integer spin (electrons, protons, neutrons, ...)
- many-particle systems in contact with surroundings:
- \blacktriangleright varying energy \longrightarrow temperature T
- \blacktriangleright varying no. of particles \longrightarrow chemical potential μ

• for an ideal gas, its Hamiltonian \tilde{H} on the many-particle Hilbert space is determined by a one-particle Hamiltonian H,

$$H = \sum_{\lambda=1}^{\mathcal{M}} |\lambda\rangle E_{\lambda} \langle \lambda |, \qquad (16)$$

where $|\lambda\rangle$ and E_{λ} ($\lambda = 1, 2, ..., M$) are normalized eigenvectors and eigenvalues of H

 \bullet the eigenstates of $\,\tilde{H}\,$ (and the orthonormal basis in the many-particle Hilbert space) are given by

$$\mathcal{S}\left\{\left|\lambda_{1}\right\rangle\otimes\left|\lambda_{2}\right\rangle\otimes\ldots\otimes\left|\lambda_{N}\right\rangle\right\} = \left|\left\{n_{\lambda}\right\}_{\lambda=1}^{\mathcal{M}}\right\rangle, \quad (17)$$

where: N (N = 0, 1, 2, ...) – total number of particles, S – (anti)symmetrization including normalization, n_{λ} – occupation numbers $\begin{array}{ll} \text{for bosons:} & n_{\lambda} \in \{0,1,2,\dots\} \\ \text{for fermions:} & n_{\lambda} \in \{0,1\} \end{array} \tag{18}$

• the total number of particles in a particular eigenstate, Eq. (17), is equal to

$$N_{\{n_{\lambda}\}} = \sum_{\lambda=1}^{\mathcal{M}} n_{\lambda}$$
 (19)

and the corresponding eigenvalue of \tilde{H} is

$$\tilde{E}_{\{n_{\lambda}\}} = \sum_{\lambda=1}^{\mathcal{M}} n_{\lambda} E_{\lambda}$$
(20)

• let us consider a general one-particle operator A,

$$A = \sum_{\lambda,\nu=1}^{\mathcal{M}} |\lambda\rangle A_{\lambda\nu} \langle \nu|, \qquad A_{\lambda\nu} = \langle \lambda|A|\nu\rangle; \qquad (21)$$

this operator leads naturally to its counterpart \tilde{A} acting on the many-particle states as follows:

$$\tilde{A} \{ |\lambda_1\rangle \otimes |\lambda_2\rangle \otimes \ldots \otimes |\lambda_N\rangle \}
= (A|\lambda_1\rangle) \otimes |\lambda_2\rangle \otimes \ldots \otimes |\lambda_N\rangle
+ |\lambda_1\rangle \otimes (A|\lambda_2\rangle) \otimes \ldots \otimes |\lambda_N\rangle
+ \ldots
+ |\lambda_1\rangle \otimes |\lambda_2\rangle \otimes \ldots \otimes (A|\lambda_N\rangle);$$
(22)

examples of A/\tilde{A} : kinetic energy, magnetic moment, spin, ...

• (a comment on second quantization) in terms of creation (a_{λ}^{+}) and annihilation (a_{λ}) operators, the extended operators \tilde{H} and \tilde{A} can be written as

$$ilde{\mathcal{H}} = \sum_{\lambda=1}^{\mathcal{M}} E_{\lambda} a_{\lambda}^{+} a_{\lambda} \,, \qquad ilde{\mathcal{A}} = \sum_{\lambda,\nu=1}^{\mathcal{M}} A_{\lambda\nu} a_{\lambda}^{+} a_{\nu}$$

 \bullet the quantum-mechanical averages of \tilde{A} in the eigenstates of \tilde{H} are given by

$$\left\langle \{n_{\lambda}\}_{\lambda=1}^{\mathcal{M}} \middle| \tilde{A} \middle| \{n_{\lambda}\}_{\lambda=1}^{\mathcal{M}} \right\rangle = \sum_{\lambda=1}^{\mathcal{M}} n_{\lambda} A_{\lambda\lambda} = \sum_{\lambda=1}^{\mathcal{M}} n_{\lambda} \langle \lambda | A | \lambda \rangle, \quad (23)$$

which has an obvious physical meaning

• in order to get the quantum-mechanical and statistical average of \tilde{A} , we need the statistical averages of the occupation numbers n_{λ} at a given temperature T and chemical potential μ

• the probability of a particular value $n_{\lambda} \propto \exp[\beta(\mu - E_{\lambda})n_{\lambda}]$, which yields the average occupation number $\langle n_{\lambda} \rangle$ as

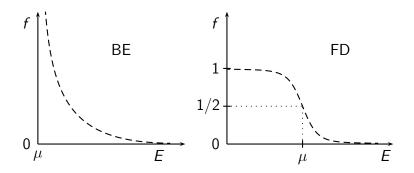
$$\langle n_{\lambda} \rangle (T,\mu) = \frac{1}{\exp[\beta(E_{\lambda}-\mu)] \mp 1} \equiv f_{\lambda}(T,\mu).$$
 (24)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is the well-known Bose-Einstein or Fermi-Dirac distribution function (BE – upper sign, FD – lower sign).

• Bose-Einstein / Fermi-Dirac distribution functions

$$f(E; T, \mu) = \frac{1}{\exp[\beta(E - \mu)] \mp 1}$$
 (25)



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

• the quantum-mechanical and statistical average of the observable \tilde{A} follows from Eq. (23) and Eq. (24):

$$\bar{A}(T,\mu) = \sum_{\lambda=1}^{\mathcal{M}} A_{\lambda\lambda} \langle n_{\lambda} \rangle (T,\mu) = \sum_{\lambda=1}^{\mathcal{M}} A_{\lambda\lambda} f_{\lambda}(T,\mu), \quad (26)$$

with an obvious physical meaning; this result can be recast as

$$\bar{A}(T,\mu) = \sum_{\lambda=1}^{\mathcal{M}} \langle \lambda | A | \lambda \rangle f_{\lambda}(T,\mu) = \operatorname{Tr}\{Af(T,\mu)\}, \quad (27)$$

where the trace refers to the *one-particle Hilbert space* and where we introduced a one-particle density matrix

$$f(T,\mu) = \sum_{\lambda=1}^{\mathcal{M}} |\lambda\rangle f_{\lambda}(T,\mu) \langle \lambda|$$
(28)

1 Kubo linear response theory

1.0 Introduction

- the isothermic susceptibility refers to quasi-static perturbations (very slow changes of the Hamiltonian): the system remains in full thermodynamic equilibrium
- the Kubo theory describes an opposite limit: the perturbation and the response vary in time; full equilibrium only before the perturbation is switched on; the interaction system-surroundings is completely neglected during the process ⇒ 'adiabatic' response
- despite this simplification, the Kubo theory proved very useful and successful for a wide class of problems
- here: basic properties of (non-)interacting electrons within a simple model and using a mean-field-like approximation

1.1 General formulation

• let us consider a time-independent Hamiltonian H_0 of a quantum-mechanical system (in contact with surroundings) and let as add a small time-dependent perturbation

$$H_1(t) = B \exp(-i\omega t + \eta t) + B^+ \exp(i\omega t + \eta t), \quad (29)$$

where B is an operator and $\eta \rightarrow 0^+,$ so that the total Hamiltonian

$$H(t) = H_0 + H_1(t)$$
 (30)

coincides with H_0 in very distant past $(t
ightarrow -\infty)$

• this setup corresponds to a slow (on a microscopic time scale) switching on the perturbation added to the original unperturbed time-independent Hamiltonian H_0

• the equilibrium density matrix at temperature T [with $\beta = 1/(k_B T)$] is

$$\rho_0 = \frac{1}{Z} \exp(-\beta H_0), \qquad Z = \operatorname{Tr} \{ \exp(-\beta H_0) \}; \quad (31)$$

in the basis of eigenvectors $|m\rangle$ of the Hamiltonian H_0 with eigenvalues E_m , the matrix elements of ρ_0 are given by

$$\langle m|\rho_0|n\rangle = \delta_{mn}w_m, \qquad w_m = \frac{1}{Z}\exp(-\beta E_m), \qquad (32)$$

the partition function is equal to $Z = \sum_{m} \exp(-\beta E_{m})$ and the operator ρ_{0} is explicitly given by

$$\rho_0 = \sum_m |m\rangle \, w_m \, \langle m| \tag{33}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• let us investigate the time evolution $(\hbar = 1)$ due to the total Hamiltonian H(t) of states $|\Psi_m(t)\rangle$ and of the density matrix

$$\rho(t) = \sum_{m} |\Psi_{m}(t)\rangle w_{m} \langle \Psi_{m}(t)|, \qquad (34)$$

which satisfy following initial conditions for $t \to -\infty$:

$$\exp(iE_m t)|\Psi_m(t)\rangle \to |m\rangle, \qquad \rho(-\infty) = \rho_0 \qquad (35)$$

• physically, this procedure corresponds to a complete neglect of the interaction between the studied system and its surroundings during the switching on the perturbation $H_1(t)$ (this interaction is responsible for bringing the system into thermodynamic equilibrium at temperature T for $t = -\infty$)

 \implies 'adiabatic' (mechanical) response

• the Schrödinger equation $(\hbar = 1)$ for the states $|\Psi_m(t)
angle$,

$$i \frac{\partial}{\partial t} |\Psi_m(t)\rangle = H(t) |\Psi_m(t)\rangle,$$

leads to the Liouville (von Neumann) equation for the density matrix $\rho(t)$,

$$i\frac{\partial}{\partial t}
ho(t) = \left[H(t),
ho(t)
ight],$$
 (36)

where [A, B] = AB - BA denotes the commutator

• let us write the total density matrix in a form

$$\rho(t) = \rho_0 + \rho_1(t), \qquad \rho_1(-\infty) = 0,$$
(37)

where $\rho_1(t)$ is considered as an infinitesimally small correction to ρ_0 due to the perturbation $H_1(t)$ • this yields (with keeping only linear terms)

$$i\frac{\partial}{\partial t}
ho_1(t) = [H_0 + H_1(t),
ho_0 +
ho_1(t)] \approx [H_0,
ho_1(t)] + [H_1(t),
ho_0]$$

and finally a differential equation for the $\rho_1(t)$,

$$i\frac{\partial}{\partial t}\rho_{1}(t) + [\rho_{1}(t), H_{0}] = [H_{1}(t), \rho_{0}]$$

= $[B, \rho_{0}]\exp(-i\omega t + \eta t) + [B^{+}, \rho_{0}]\exp(i\omega t + \eta t).$ (38)

The latter can be solved by using an Ansatz

$$\rho_1(t) = \sigma \exp(-i\omega t + \eta t) + \sigma^+ \exp(i\omega t + \eta t), \qquad (39)$$

where σ is a time-independent operator (matrix). Substitution of this Ansatz into Eq. (38) leads to

$$i(-i\omega+\eta)\sigma + [\sigma, H_0] = [B, \rho_0]$$
(40)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and to an equivalent (Hermitian conjugate) relation.

• the solution of Eq. (40),

$$(\omega+i\eta)\sigma+[\sigma,H_0]=[B,\rho_0],$$

can be done in the basis of the eigenstates of H_0 (with $\langle n|\sigma|m\rangle = \sigma_{nm}$, $\langle n|B|m\rangle = B_{nm}$). One obtains:

$$(\omega + i\eta)\sigma_{nm} + \sigma_{nm}(E_m - E_n) = B_{nm}(w_m - w_n),$$

which provides the final result in a form

$$\sigma_{nm} = B_{nm} \frac{w_m - w_n}{\omega + i\eta + E_m - E_n}.$$
 (41)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1.2 Generalized susceptibility and Kramers-Krönig relations

• a physical quantity of the system, given by the statistical average of a Hermitian operator A, depends on time as

$$ar{A}(t) = \operatorname{Tr}\{A
ho(t)\} = ar{A}_0 + ar{A}_1(t), \ ar{A}_0 = \operatorname{Tr}\{A
ho_0\}, \quad ar{A}_1(t) = \operatorname{Tr}\{A
ho_1(t)\},$$

where the (infinitesimally small) time-dependent term is

$$\bar{A}_{1}(t) = \operatorname{Tr}\{A\sigma\} \exp(-i\omega t + \eta t) + \text{c.c.}$$

$$= \sum_{mn} A_{mn}\sigma_{nm} \exp(-i\omega t + \eta t) + \text{c.c.}$$

$$\equiv \chi_{AB}(\omega) \exp(-i\omega t + \eta t) + \text{c.c.}, \quad (42)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where c.c. denotes a complex conjugate term

• the quantity $\chi_{AB}(\omega)$ is the generalized (Kubo) susceptibility that is explicitly given by

$$\chi_{AB}(\omega) = \sum_{nm} A_{mn} B_{nm} \frac{w_m - w_n}{\omega + i\eta + E_m - E_n}.$$
 (43)

The limit $\eta \rightarrow 0^+$ is implicitly assumed in Eq. (43).

• the susceptibility $\chi_{AB}(\omega)$ is a complex number; its magnitude describes the strength of the response while its phase refers to the phase shift between the periodic perturbation $H_1(t)$ and the induced response $\bar{A}_1(t)$

• the susceptibility $\chi_{AB}(\omega)$ consists of terms that exhibit singular behavior for frequencies $\omega = E_n - E_m$, i.e., for frequencies corresponding to excitation energies of the system • an example: a system at T = 0 with a non-degenerate ground state ($|0\rangle$, E_0) $\implies w_0 = 1$ (ground state), $w_n = 0$ for n = 1, 2, ... (excited states), which yields:

$$\chi_{AB}(\omega) = \sum_{n=1}^{+\infty} \left(\frac{A_{0n}B_{n0}}{\omega + i\eta + E_0 - E_n} - \frac{A_{n0}B_{0n}}{\omega + i\eta + E_n - E_0} \right)$$

⇒ poles at the excitation energies $\omega = E_n - E_0$ $(n \ge 1)$: ¶ a pole in the susceptibility ↔ an excited state ¶ weights of the singular terms: selection rules for A_{0n} , B_{0n}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• the limit $\eta \to 0^+$ in $\chi_{AB}(\omega)$ can be performed using the relation

$$\lim_{\eta \to 0^+} \frac{1}{x \pm i\eta} = \wp \frac{1}{x} \mp i\pi \delta(x), \qquad (44)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

where x is a real variable, \wp denotes the principal value, and $\delta(x)$ is the Dirac δ -function; this relation means

$$\lim_{\eta \to 0^+} \int_{-\infty}^{+\infty} \frac{\varphi(x)}{x + i\eta} \, \mathrm{d}x = \lim_{\eta \to 0^+} \left(\int_{-\infty}^{-\eta} + \int_{\eta}^{+\infty} \right) \frac{\varphi(x)}{x} \, \mathrm{d}x$$
$$- i\pi\varphi(0)$$

for smooth functions $\varphi(x)$ rapidly decaying for $x \to \pm \infty$;

$$\implies \qquad \wp \int_{b}^{a} x^{-1} \, \mathrm{d}x = \ln |a/b| \qquad \text{for } b < 0 < a$$

• decomposition of the susceptibility in two terms:

$$\chi_{AB}(\omega) = \lim_{\eta \to 0^{+}} \sum_{nm} A_{mn} B_{nm} \frac{w_m - w_n}{\omega + i\eta + E_m - E_n}$$

$$\equiv \chi_{AB}^{(1)}(\omega) + i\chi_{AB}^{(2)}(\omega),$$

$$\chi_{AB}^{(1)}(\omega) = \sum_{nm} A_{mn} B_{nm} (w_m - w_n) \wp \frac{1}{\omega + E_m - E_n},$$

$$\chi_{AB}^{(2)}(\omega) = -\pi \sum_{nm} A_{mn} B_{nm} (w_m - w_n) \delta(\omega + E_m - E_n),$$

(45)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\chi^{(1)}_{AB}(\omega)$ – dispersive part, $\chi^{(2)}_{AB}(\omega)$ – absorptive part notes on the absorptive part:

► for $B = A = A^+$, we get: $\chi^{(2)}_{AA}(\omega) \sim \sum_{nm} |A_{mn}|^2 (w_m - w_n) \,\delta(\omega + E_m - E_n)$

- $\chi^{(2)}_{AA}(\omega)$ coincides with the imaginary part of $\chi_{AA}(\omega)$
- ► close relation to the Fermi golden rule: probability (per unit time) of transitions between two eigenstates $|m\rangle$ and $|n\rangle$ of H_0 is $\sim |A_{mn}|^2 \delta(\omega + E_m E_n)$
- ► the rate of energy dissipation/absorption by the system due to the time-dependent perturbation is $\sim \omega \chi^{(2)}_{AA}(\omega)$
- ▶ analogy with classical electric circuits: the Joule's heat is due to resistivity R – the real part of the impedance Z(ω) = R + i[Lω − (Cω)⁻¹]

• each of both parts of the susceptibility can be expressed by means of the other part using the Kramers-Krönig relations:

$$\chi_{AB}^{(1)}(\omega) = -\frac{1}{\pi} \wp \int_{-\infty}^{\infty} \frac{1}{\omega - \zeta} \chi_{AB}^{(2)}(\zeta) \,\mathrm{d}\zeta \,,$$

$$\chi_{AB}^{(2)}(\omega) = \frac{1}{\pi} \wp \int_{-\infty}^{\infty} \frac{1}{\omega - \zeta} \chi_{AB}^{(1)}(\zeta) \,\mathrm{d}\zeta \,, \qquad (46)$$

provided that the integrals on the r.h.s. converge

• these relations reflect the causality between a general time-dependent perturbation and the resulting response:

$$ar{\mathcal{A}}(t) \,=\, \int_{-\infty}^t \mathcal{F}[t,t',\mathcal{A},\mathcal{H}_0,\mathcal{H}_1(t')]\,\mathrm{d}\,t'$$

(integration only over $t' \leq t$)

• (proof of the Kramers-Krönig relations) The first of Eq. (46) can be proved using Eq. (45) and the well-known property of the δ -function, namely

$$\int_{-\infty}^\infty g(x)\,\delta(x-x_1)\,\mathsf{d}x\,=\,g(x_1)$$
 ,

while the second of Eq. (46) can be obtained from an identity

$$\int_{-\infty}^{\infty} \wp \frac{1}{x-x_1} \wp \frac{1}{x-x_2} \, dx = \pi^2 \, \delta(x_1-x_2) \, .$$

The latter follows from Eq. (44) and from integrals:

$$\int_{-\infty}^{\infty} \frac{1}{x - x_1 - i\eta_1} \frac{1}{x - x_2 + i\eta_2} dx = \frac{2\pi i}{x_1 - x_2 + i(\eta_1 + \eta_2)},$$

$$\int_{-\infty}^{\infty} \frac{1}{x - x_1 + i\eta_1} \frac{1}{x - x_2 + i\eta_2} dx = 0,$$

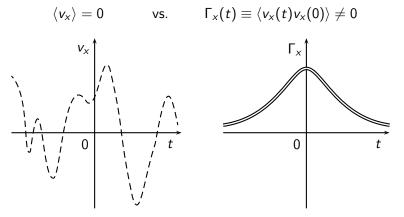
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where x_1, x_2 are real and η_1, η_2 are positive.

1.3 Fluctuation-dissipation theorem

• a relation between the Kubo susceptibility and the correlation of time-dependent fluctuations in the unperturbed system

• in classical statistics – autocorrelation of particle velocity v_x :



• for a quantum system with an unperturbed Hamiltonian H_0 and for a Hermitian operator A, we introduce (Heisenberg picture)

$$A(t) = \exp(iH_0t) A \exp(-iH_0t)$$

and define the corresponding autocorrelation function as

$$\Gamma_{\mathcal{A}}(t) = \frac{1}{2} \langle \mathcal{A}(t) \mathcal{A} + \mathcal{A}\mathcal{A}(t) \rangle = \frac{1}{2} \operatorname{Tr} \{ \rho_0[\mathcal{A}(t) \mathcal{A} + \mathcal{A}\mathcal{A}(t)] \}, \quad (47)$$

where $\rho_0 = Z^{-1} \exp(-\beta H_0), \ Z = \text{Tr}\{\exp(-\beta H_0)\}$

• for the Fourier transformation of $\Gamma_A(t)$, defined by $\tilde{\Gamma}_A(\omega) = \int_{-\infty}^{+\infty} \exp(i\omega t) \Gamma_A(t) dt$,

one can prove the fluctuation-dissipation theorem:

$$\tilde{\Gamma}_{\mathcal{A}}(\omega) = -\coth\left(\frac{\beta\omega}{2}\right)\chi^{(2)}_{\mathcal{A}\mathcal{A}}(\omega)$$
 (48)

• proof of Eq. (48): In the basis of eigenvectors of H_0 , we get $\tilde{\Gamma}_A(\omega) = \pi \sum_{nm} |A_{mn}|^2 (w_m + w_n) \delta(\omega + E_m - E_n)$,

where we employed the identity $\int_{-\infty}^{+\infty} \exp(i\Omega t) dt = 2\pi \delta(\Omega)$. According to Eq. (45) we have

$$\chi^{(2)}_{AA}(\omega) = -\pi \sum_{nm} |A_{mn}|^2 (w_m - w_n) \,\delta(\omega + E_m - E_n) \;.$$

With the use of the identity

$$w_m \,\delta(\omega + E_m - E_n) = \exp(\beta\omega) \,w_n \,\delta(\omega + E_m - E_n)$$
,

we get relations

$$\begin{split} \tilde{\Gamma}_{A}(\omega) &= \pi \left[1 + \exp(\beta \omega) \right] \sum_{nm} |A_{mn}|^2 \, w_n \, \delta(\omega + E_m - E_n) \,, \\ \chi^{(2)}_{AA}(\omega) &= \pi \left[1 - \exp(\beta \omega) \right] \sum_{nm} |A_{mn}|^2 \, w_n \, \delta(\omega + E_m - E_n) \,, \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

from which the validity of Eq. (48) can easily be seen.

• relation to classical electric circuits:

the macroscopic measurement of the impedance $\mathcal{Z}(\omega) = R + i[L\omega - (C\omega)^{-1}]$ at temperature T provides an information about the microscopic equilibrium thermal noise, the so-called Johnson-Nyquist noise due to the current and voltage fluctuations (present in circuits without an external source)

1.4 Non-interacting many-particle systems

• the linear response theory for non-interacting many-particle systems with A and B being one-particle operators can be formulated entirely in terms of the one-particle Hamiltonian $H(t) = H_0 + H_1(t)$

• eigenvectors and eigenvalues of H_0 : $|\lambda\rangle$, $|\nu\rangle$ and E_{λ} , E_{ν} ; the equilibrium one-particle density matrix f is given in terms of average occupation numbers f_{λ} as

$$f = \sum_{\lambda} \ket{\lambda} f_{\lambda} \langle \lambda
vert, \qquad f_{\lambda} = rac{1}{\exp[eta(E_{\lambda} - \mu)] \pm 1},$$

where $\,\mu\,$ is the chemical potential of the particles and $\,(+/-)\,$ refers to fermions/bosons

• the resulting generalized non-interacting Kubo susceptibility is given by

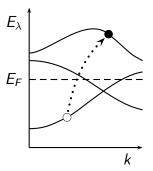
$$\chi_{AB}(\omega) = \sum_{\lambda\nu} A_{\lambda\nu} B_{\nu\lambda} \frac{f_{\lambda} - f_{\nu}}{\omega + i\eta + E_{\lambda} - E_{\nu}}$$
(49)

the same formal structure as the general result, Eq. (43)
|λ⟩, |ν⟩ and f_λ, f_ν instead of |m⟩, |n⟩ and w_m, w_n
Eq. (49) employs the one-particle Hilbert space

• the susceptibility $\chi_{AB}(\omega)$ consists of terms that exhibit singular behavior for frequencies $\omega = E_{\nu} - E_{\lambda}$, i.e., for frequencies given by excitation energies of the one-particle Hamiltonian. These frequencies correspond to the so-called pair excitations of the non-interacting many-particle system. • for a many-fermion system at T = 0:

 $f_{\lambda} = 1$ for $E_{\lambda} < E_F$, $f_{\lambda} = 0$ for $E_{\lambda} > E_F$, where E_F – the Fermi energy ($E_F = \mu$ for T = 0)

 \implies the $\chi_{AB}(\omega)$ consists of terms connecting an occupied state with an unoccupied state (particle-hole excitations)



 this scheme explains various electronic properties of solids (optical conductivities, el. and magn. susceptibilities, ...)

2 Response of homogeneous electron gas

2.1 Jellium model

• atomic nuclei of a solid are replaced by a positively charged classical homogeneous background on which electrons move

• we consider non-interacting electrons in a constant potential. The unperturbed one-particle Hamiltonian is $(\hbar = 1)$:

$$H_0 = -\frac{\Delta}{2m}, \qquad (50)$$

where m is the electron mass;

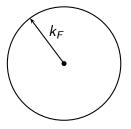
its eigenvectors are labelled by the reciprocal-space vector **k**:

$$|\lambda\rangle \dots |\mathbf{k}\rangle, \quad \langle \mathbf{r} |\lambda\rangle \dots \frac{\exp(i\mathbf{k}\cdot\mathbf{r})}{\sqrt{(2\pi)^3}}, \quad E_{\lambda} \dots E_{\mathbf{k}} = \frac{k^2}{2m}$$

(electron spin ignored – sometimes a factor of 2 added).

• the jellium model is specified by a single parameter – the homogeneous density ρ (no. of electrons per unit volume); for T = 0, the occupied states are for $|\mathbf{k}| \equiv k \leq k_F$, where k_F – the Fermi-sphere radius, related to E_F and ρ :

$$E_F = \frac{k_F^2}{2m}, \qquad k_F = \sqrt[3]{3\pi^2 \varrho}$$
 (51)



• values of k_F for simple metals (Li, K, Mg, Ca, Al, ...): $0.4 \le k_F a_0 \le 1$ $[a_0 = 1/(me'^2)$ – Bohr radius ($\hbar = 1$) and $e'^2 \equiv e^2/(4\pi\epsilon_0)$]

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

2.2 Non-interacting susceptibility of jellium

• as the perturbation, we consider an infinitesimal time- and space-dependent local potential $\delta V(\mathbf{r}', t')$ which leads to infinitesimal changes of the electron density $\delta \varrho(\mathbf{r}, t)$

• the most general form of the linear response is given by

$$\delta \varrho(\mathbf{r}, t) = \int \int_{-\infty}^{t} \chi_0(\mathbf{r}, \mathbf{r}', t, t') \, \delta V(\mathbf{r}', t') \, \mathrm{d}^3 \mathbf{r}' \, \mathrm{d}t' \qquad (52)$$

• the unperturbed state of jellium is homogeneous in space and time $\implies \chi_0(\mathbf{r}, \mathbf{r}', t, t') = \chi_0(\mathbf{r} - \mathbf{r}', t - t')$ and Eq. (52) can be simplified by the Fourier transformation $(\mathbf{r} \rightarrow \mathbf{q}, t \rightarrow \omega)$:

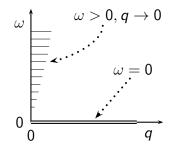
$$\delta \tilde{\varrho}(\mathbf{q},\omega) = \tilde{\chi}_0(\mathbf{q},\omega) \,\delta \tilde{V}(\mathbf{q},\omega) \,, \tag{53}$$

where $\delta \tilde{\varrho}(\mathbf{q},\omega) = \int \int \exp(-i\mathbf{q}\cdot\mathbf{r} + i\omega t) \,\delta \varrho(\mathbf{r},t) \,\mathrm{d}^3\mathbf{r} \,\mathrm{d}t$ and similarly for $\delta \tilde{V}(\mathbf{q},\omega)$ and $\tilde{\chi}_0(\mathbf{q},\omega)$, and where

$$\tilde{\chi}_{0}(\mathbf{q},\omega) = \frac{2}{(2\pi)^{3}} \int \frac{f_{\mathbf{k}} - f_{\mathbf{k}+\mathbf{q}}}{\omega + i\eta + E_{\mathbf{k}} - E_{\mathbf{k}+\mathbf{q}}} d^{3}\mathbf{k}$$
(54)

denotes the non-interacting (bare, unrenormalized) susceptibility of the homogeneous electron gas

• a closed analytic formula for $\tilde{\chi}_0(\mathbf{q},\omega) = \tilde{\chi}_0(q,\omega)$ exists (here $q \equiv |\mathbf{q}|$) (Lindhard function – – not too transparent)



・ロット (雪) (日) (日) (日)

• proof of Eq. (54): We identify $|\lambda\rangle, |\nu\rangle$ with $|\mathbf{k}\rangle, |\mathbf{k}'\rangle$. The ω -component of the local perturbing potential $\delta V(\mathbf{r}, t)$ leads to the matrix elements $B_{\nu\lambda} \equiv (2\pi)^{-3} \,\delta \tilde{V}(\mathbf{k}' - \mathbf{k}, \omega)$. The Fourier transformed electron density corresponds to the local operator $\exp(-i\mathbf{q}\cdot\mathbf{r})\delta(\mathbf{r}-\mathbf{r}')$ and its matrix elements are $A_{\lambda\nu} \equiv 2\delta(\mathbf{k}' - \mathbf{k} - \mathbf{q})$, where the factor of 2 accounts for the electron spin and where we used the identity $\int \exp(i\mathbf{Q}\cdot\mathbf{r})d^3\mathbf{r} = (2\pi)^3\delta(\mathbf{Q})$. The quantity $\delta \tilde{\varrho}(\mathbf{q},\omega)$ can be identified with $\chi_{AB}(\omega)$, Eq. (49), and it is explicitly given by

$$\begin{split} \delta \tilde{\varrho}(\mathbf{q},\omega) &= 2 \, (2\pi)^{-3} \int \int \delta(\mathbf{k}' - \mathbf{k} - \mathbf{q}) \, \delta \tilde{V}(\mathbf{k}' - \mathbf{k},\omega) \\ &\times \frac{f_{\mathbf{k}} - f_{\mathbf{k}'}}{\omega + i\eta + E_{\mathbf{k}} - E_{\mathbf{k}'}} \, \mathrm{d}^{3}\mathbf{k} \, \mathrm{d}^{3}\mathbf{k}' \\ &= 2 \, (2\pi)^{-3} \, \delta \tilde{V}(\mathbf{q},\omega) \int \frac{f_{\mathbf{k}} - f_{\mathbf{k}+\mathbf{q}}}{\omega + i\eta + E_{\mathbf{k}} - E_{\mathbf{k}+\mathbf{q}}} \, \mathrm{d}^{3}\mathbf{k} \,, \end{split}$$

which coincides with Eq. (53) and Eq. (54).

- (a technical note on the **k**-integration)
- ¶ original integration region for $\tilde{\chi}_0(\mathbf{q},\omega)$ two Fermi spheres

 \P with substitution ${\bf k}\to -{\bf k}-{\bf q}$ ($f_{\bf k}\leftrightarrow f_{{\bf k}+{\bf q}}$, $E_{\bf k}\leftrightarrow E_{{\bf k}+{\bf q}}$) we obtain

$$\tilde{\chi}_{0}(\mathbf{q},\omega) = \frac{2}{(2\pi)^{3}} \int \left(\frac{1}{\omega + i\eta + E_{\mathbf{k}} - E_{\mathbf{k}+\mathbf{q}}} + \frac{1}{-\omega - i\eta + E_{\mathbf{k}} - E_{\mathbf{k}+\mathbf{q}}}\right) f_{\mathbf{k}} d^{3}\mathbf{k} \quad (55)$$

・ロット (雪) (日) (日) (日)

(integration over a single Fermi sphere)

2.3 Properties of non-interacting susceptibility

ullet in the static limit ($\omega=$ 0), Eq. (55) and Eq. (44) yield

$$ilde{\chi}_0(\mathbf{q},0)\,=\,rac{4}{(2\pi)^3}\,\wp\intrac{f_{\mathbf{k}}}{E_{\mathbf{k}}-E_{\mathbf{k}+\mathbf{q}}}\,\mathrm{d}^3\mathbf{k}\,,$$

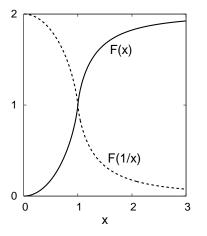
which shows that the static susceptibility is real. We get:

$$\begin{split} \tilde{\chi}_{0}(\mathbf{q},0) &= \frac{8\pi}{(2\pi)^{3}} \wp \int_{0}^{k_{F}} k^{2} \mathrm{d}k \int_{0}^{\pi} \sin \theta \, \mathrm{d}\theta \, \frac{-2m}{2kq \cos \theta + q^{2}} \\ &= -\frac{2m}{\pi^{2}} \wp \int_{0}^{k_{F}} k^{2} \mathrm{d}k \int_{-1}^{1} \mathrm{d}u \, \frac{1}{2kqu + q^{2}} \\ &= -\frac{m}{\pi^{2}q} \int_{0}^{k_{F}} k \, \mathrm{d}k \ln \left| \frac{2k + q}{-2k + q} \right| \\ &= -\frac{mq}{4\pi^{2}} \int_{0}^{2k_{F}/q} y \ln \left| \frac{y + 1}{y - 1} \right| \mathrm{d}y \,, \end{split}$$

where we substituted $\cos \theta = u$ and k = qy/2.

• let us introduce a special function F(x) defined for x > 0 as

$$F(x) = \frac{1}{x} \int_0^x y \ln \left| \frac{y+1}{y-1} \right| dy = 1 + \frac{x^2 - 1}{2x} \ln \left| \frac{x+1}{x-1} \right|$$
(56)



its properties:

• for $x \to 0$: $F(x) \approx 2x^2/3$

• for
$$x \to +\infty$$
:
 $F(x) \approx 2 - 2/(3x^2)$

• F(1) = 1 and $F'(1) = +\infty$ (infinite derivative)

• for all x: $F(x) + F(x^{-1}) = 2$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

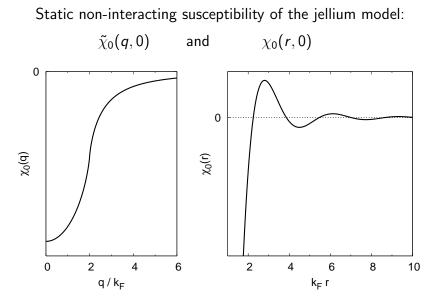
• the resulting static non-interacting susceptibility in the reciprocal space is

$$\tilde{\chi}_0(\mathbf{q},0) = -\frac{mk_F}{2\pi^2} F\left(\frac{2k_F}{q}\right), \qquad (57)$$

and its real-space counterpart is $(|\mathbf{r}| \equiv r)$

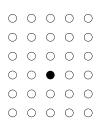
$$\chi_{0}(\mathbf{r},0) = (2\pi)^{-3} \int \exp(i\mathbf{q} \cdot \mathbf{r}) \,\tilde{\chi}_{0}(\mathbf{q},0) \,\mathrm{d}^{3}\mathbf{q}$$
$$= \frac{m}{(2\pi)^{3}} \frac{(2k_{F}r)\cos(2k_{F}r) - \sin(2k_{F}r)}{r^{4}} \qquad (58)$$

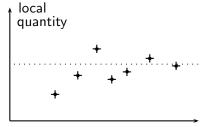
- the most important features of these functions are:
- ▶ infinite derivative of \$\tilde{\chi}_0(\mathbf{q},0)\$ at \$q = 2k_F\$ ('touching Fermi spheres')
- ▶ oscillatory behavior of $\chi_0(\mathbf{r}, 0)$ for $\mathbf{r} \to \infty$ with a period π/k_F and an amplitude decaying as \mathbf{r}^{-3} (Friedel oscillations)



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- experimental verification of the Friedel oscillations:
- variations of local quantities induced by defects: non-monotonic dependence on distance from the defect
- in magnetism: the RKKY interaction between localized magnetic moments mediated by the conduction electrons





distance from impurity

• for $\omega > 0$, the imaginary part of $\tilde{\chi}_0(\mathbf{q}, \omega)$ is according to Eq. (55) and Eq. (44) given by

$$\sim \int \left[\, \delta(\omega + E_{\mathbf{k}} - E_{\mathbf{k}+\mathbf{q}}) \, - \, \delta(\omega - E_{\mathbf{k}} + E_{\mathbf{k}+\mathbf{q}}) \,
ight] f_{\mathbf{k}} \, \mathrm{d}^{3}\mathbf{k} \, ,$$

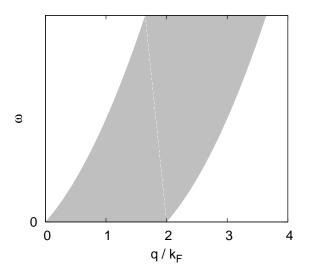
which (for a given vector \mathbf{q} and at T = 0) is non-zero only for frequencies satisfying

$$\frac{q^2}{2m} - \frac{k_F q}{m} < \omega < \frac{q^2}{2m} + \frac{k_F q}{m}, \qquad (59)$$

which defines a region between two parabolas

• perturbations with $\delta \tilde{V}(\mathbf{q},\omega) \neq 0$ for (q,ω) inside this region are accompanied by energy dissipation

Spectrum of particle-hole excitations of the jellium model [region of non-zero imaginary part of $\tilde{\chi}_0(q, \omega)$]



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

3 Response of homogeneous electron liquid

3.1 Hartree approximation and interacting susceptibility

• a complete inclusion of the electron-electron interaction in the response properties requires the general formalism of sections 1.1 and 1.2 (intractable exactly)

• a mean-field-like alternative is the Hartree approximation: the original relation $\delta \varrho = \chi_0 * \delta V$ is employed, but with replacement of the local perturbing potential $\delta V(\mathbf{r}, t)$ by an effective total potential $\delta V_{tot}(\mathbf{r}, t)$ given by

$$\delta V(\mathbf{r},t) \rightarrow \delta V_{tot}(\mathbf{r},t) = \delta V_{ext}(\mathbf{r},t) + \delta V_{H}(\mathbf{r},t), \quad (60)$$

where: δV_{ext} – the external (applied) potential, δV_H – the Hartree term due to the induced density change $\delta \varrho$ (classical electrostatics):

$$\delta V_{\mathcal{H}}(\mathbf{r},t) = e^{\prime 2} \int \frac{\delta \varrho(\mathbf{r}^{\prime},t)}{|\mathbf{r}-\mathbf{r}^{\prime}|} d^{3}\mathbf{r}^{\prime}, \qquad e^{\prime 2} \equiv \frac{e^{2}}{4\pi\epsilon_{0}}.$$
(61)

The Hartree term – analogy to the Weiss molecular field.

• this leads to relations between the Fourier transforms:

$$\begin{split} \delta \tilde{\varrho}(\mathbf{q},\omega) &= \tilde{\chi}_0(\mathbf{q},\omega) \,\delta \tilde{V}_{tot}(\mathbf{q},\omega) \,, \\ \delta \tilde{V}_{tot}(\mathbf{q},\omega) &= \delta \tilde{V}_{ext}(\mathbf{q},\omega) + \delta \tilde{V}_H(\mathbf{q},\omega) \,, \\ \delta \tilde{V}_H(\mathbf{q},\omega) &= \tilde{U}(\mathbf{q}) \,\delta \tilde{\varrho}(\mathbf{q},\omega) \,, \end{split}$$
(62)

where

$$\tilde{U}(\mathbf{q}) = \int \exp(-i\mathbf{q}\cdot\mathbf{r}) \frac{e^{\prime 2}}{r} d^3\mathbf{r} = \frac{4\pi e^{\prime 2}}{q^2}$$
(63)

is the Fourier transformation of the Coulomb interaction $(r \equiv |\mathbf{r}|, q \equiv |\mathbf{q}|)$

• Eqs. (62) yield a closed linear relation for the induced density change:

$$\delta \tilde{\varrho}(\mathbf{q},\omega) \,=\, \tilde{\chi}_{0}(\mathbf{q},\omega) \left[\delta \tilde{V}_{\mathsf{ext}}(\mathbf{q},\omega) + \tilde{U}(\mathbf{q}) \,\delta \tilde{\varrho}(\mathbf{q},\omega) \right],$$

which leads to the final expression

$$\delta \tilde{\varrho}(\mathbf{q},\omega) = \tilde{\chi}(\mathbf{q},\omega) \,\delta \tilde{V}_{ext}(\mathbf{q},\omega) \,, \tag{64}$$

where

$$\tilde{\chi}(\mathbf{q},\omega) = \frac{\tilde{\chi}_{0}(\mathbf{q},\omega)}{1 - \tilde{U}(\mathbf{q})\,\tilde{\chi}_{0}(\mathbf{q},\omega)}$$
(65)

is the interacting (full, renormalized) susceptibility

• Eq. (65) bears a general form of a renormalization of the non-interacting susceptibility due to the interaction

• analogy with the susceptibility of a ferromagnet in the mean-field approximation for the classical Ising model:

 $\overline{s} = \tanh[\beta(b + \mathcal{J}\overline{s})]$

 the susceptibility of a single isolated spin (J = 0) is (the Curie law)

$$\chi_0(T) = \beta = \frac{1}{k_B T}$$

 the high-temperature susceptibility of the ferromagnet (the Curie-Weiss law) can be written as

$$\chi(T) = \frac{1}{k_B T - \mathcal{J}} = \frac{\chi_0(T)}{1 - \mathcal{J}\chi_0(T)}$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

3.2 Relation to dielectric constant

• the external perturbing potential $\delta V_{ext}(\mathbf{r}, t)$ is usually created by means of the density $\delta \varrho_{ext}(\mathbf{r}, t)$ of a classical external charge, so that

$$\begin{split} \delta V_{\text{ext}}(\mathbf{r},t) &= e^{\prime 2} \int \frac{\delta \varrho_{\text{ext}}(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|} \, \mathrm{d}^{3}\mathbf{r}' \,, \\ \delta \tilde{V}_{\text{ext}}(\mathbf{q},\omega) &= \tilde{U}(\mathbf{q}) \, \delta \tilde{\varrho}_{\text{ext}}(\mathbf{q},\omega) \,, \end{split}$$

which yields [according to Eq. (64) and Eq. (65)] the induced electron density in terms of the external density as

$$\delta \tilde{\varrho}(\mathbf{q},\omega) = \frac{\tilde{U}(\mathbf{q})\,\tilde{\chi}_0(\mathbf{q},\omega)}{1-\tilde{U}(\mathbf{q})\,\tilde{\chi}_0(\mathbf{q},\omega)}\,\delta \tilde{\varrho}_{ext}(\mathbf{q},\omega) \tag{66}$$

• the change of the total (induced and external) density

$$\delta \varrho_{tot}(\mathbf{r},t) = \delta \varrho(\mathbf{r},t) + \delta \varrho_{ext}(\mathbf{r},t)$$

due to the external density is

$$\delta \tilde{\varrho}_{tot}(\mathbf{q},\omega) = \frac{1}{1 - \tilde{U}(\mathbf{q})\,\tilde{\chi}_0(\mathbf{q},\omega)}\,\delta \tilde{\varrho}_{ext}(\mathbf{q},\omega) \qquad (67)$$

• in a homogeneous and isotropic medium, the electric field intensity (**E**) / induction (**D**) is generated by the total $(\delta \varrho_{tot})$ / external $(\delta \varrho_{ext})$ density of electric charge:

$$\epsilon_0 \mathbf{E} = \epsilon_r^{-1} \mathbf{D} \implies 1 - \tilde{U}(\mathbf{q}) \tilde{\chi}_0(\mathbf{q}, \omega) \equiv \tilde{\epsilon}_r(\mathbf{q}, \omega), \quad (68)$$

which defines the relative permittivity (dielectric constant) of the electron liquid in a random-phase approximation (RPA) or in a self-consistent-field (SCF) method

3.3 Static screening of external charge

 \bullet the electron density induced by a static ($\omega=0)$ external charge density is given by

$$\delta \tilde{\varrho}(\mathbf{q}, 0) = - \tilde{K}(\mathbf{q}) \,\delta \tilde{\varrho}_{ext}(\mathbf{q}, 0) \,, \tag{69}$$

where the quantity $\tilde{K}(\mathbf{q})$ describes a screening cloud of electrons around the perturbing classical external charge. It is given according to Eq. (66) by

$$\widetilde{K}(\mathbf{q}) = -\frac{\widetilde{U}(\mathbf{q})\,\widetilde{\chi}_{0}(\mathbf{q},0)}{1-\widetilde{U}(\mathbf{q})\,\widetilde{\chi}_{0}(\mathbf{q},0)} \\
= \frac{1}{1-\widetilde{U}^{-1}(\mathbf{q})\,\widetilde{\chi}_{0}^{-1}(\mathbf{q},0)}.$$
(70)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• for small values of q ($q \ll 2k_F$), one can employ Eq. (57) and Eq. (63) to approximate Eq. (70) by

$$\widetilde{K}(\mathbf{q}) \approx \left(1 + \frac{q^2}{4\pi e'^2} \frac{\pi^2}{mk_F}\right)^{-1} = \frac{1}{1 + \lambda_{TF}^2 q^2} \\
\equiv \widetilde{K}_{TF}(\mathbf{q}), \qquad \lambda_{TF} = \sqrt{\frac{\pi a_0}{4k_F}},$$
(71)

where $\tilde{K}_{TF}(\mathbf{q})$ – Thomas-Fermi screening kernel in reciprocal space and λ_{TF} – Thomas-Fermi screening length ($\simeq a_0$)

• the Thomas-Fermi screening kernel is applicable to static external charge densities with very slow spatial variations; its real-space representation is (screened Coulomb potential)

$$K_{TF}(\mathbf{r}) = \left(4\pi\lambda_{TF}^2 r\right)^{-1} \exp\left(-r/\lambda_{TF}\right)$$
(72)

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

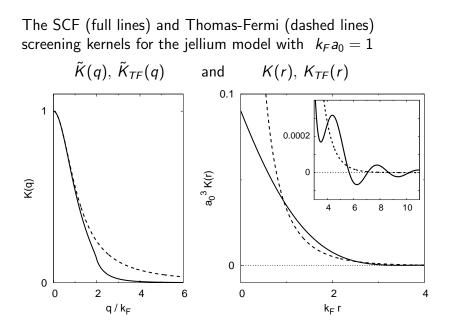
 (日)

 (日)

 (日)
 (日)

 (日)

 (日)



- properties of the full (RPA, SCF) screening kernel $\tilde{K}(\mathbf{q})$, Eq. (70), and of its real-space counterpart $K(\mathbf{r})$:
- For q ≪ 2k_F, the full screening K̃(**q**) can be replaced by the Thomas-Fermi screening K̃_{TF}(**q**)
- it holds K̃(0) = 1 and ∫ K(r)d³r = 1 ⇒ an external charge is fully screened by the induced electron cloud (similarly to the Thomas-Fermi screening)
- the divergence of ∂*x*₀(**q**, 0)/∂*q* for *q* = 2*k*_F leads to a divergence of ∂*K*(**q**)/∂*q* ⇒ *K*(**r**) also contains the Friedel-like oscillations for *r* → ∞ (in contrast to the Thomas-Fermi screening)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ for $q \to \infty$, the asymptotics of the full screening is $\tilde{K}(\mathbf{q}) \sim q^{-4} \implies K(\mathbf{r})$ remains finite for $r \to 0$ [in contrast to the divergence of $K_{TF}(\mathbf{r})$ for $r \to 0$]

3.4 Dynamical response and plasmons

• let us investigate the response functions at T = 0 for $|\mathbf{q}| = q \rightarrow 0$ and $\omega > 0$ (strictly for $k_F q + \frac{1}{2}q^2 \ll m\omega$)

• the non-interacting susceptibility, Eq. (55), can be written [using $(\omega + h)^{-1} \approx \omega^{-1} - \omega^{-2}h$ for $|h| \ll \omega$] as

$$\tilde{\chi}_{0}(\mathbf{q},\omega) = \frac{2}{(2\pi)^{3}} \int \left(\frac{1}{\omega + E_{\mathbf{k}} - E_{\mathbf{k}+\mathbf{q}}} + \frac{1}{-\omega + E_{\mathbf{k}} - E_{\mathbf{k}+\mathbf{q}}}\right) f_{\mathbf{k}} d^{3}\mathbf{k}$$
$$\approx \frac{2}{(2\pi)^{3}} \omega^{-2} \int 2 \left(E_{\mathbf{k}+\mathbf{q}} - E_{\mathbf{k}}\right) f_{\mathbf{k}} d^{3}\mathbf{k}$$
$$= \frac{q^{2}}{m\omega^{2}} \frac{k_{F}^{3}}{3\pi^{2}} = \frac{\varrho q^{2}}{m\omega^{2}}, \qquad (73)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

where the $k_F - \rho$ relation, Eq. (51), was used

• the SCF-permittivity, Eq. (68), can be written as

$$\tilde{\epsilon}_r(\mathbf{q},\omega) = 1 - \frac{4\pi e'^2}{q^2} \frac{\varrho q^2}{m\omega^2} = 1 - \frac{e^2 \varrho}{\epsilon_0 m} \frac{1}{\omega^2}; \qquad (74)$$

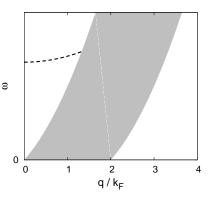
the zero of $\tilde{\epsilon}_r(\mathbf{q},\omega)$ (and the corresponding pole of the interacting susceptibility) occurs at a frequency

$$\omega = \sqrt{\frac{e^2 \varrho}{\epsilon_0 m}} \equiv \omega_{pl} , \qquad (75)$$

where ω_{pl} denotes the classical plasma frequency \P a pole in the susceptibility \longleftrightarrow an excited state

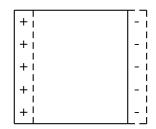
- the pole in the susceptibility points to a collective excitation of the homogeneous electron liquid the plasmon
- more accurate treatment $\implies \omega(q)$ (plasmon dispersion law)

• the plasmon mode for bigger values of *q* merges into the continuum of the particle-hole excitations



• the plasmon energy: $\hbar \omega_{pl} \approx (k_F a_0)^{3/2} \times 18 \text{ eV}$ \implies activation by elevated temperatures is inefficient, interaction with high-energy particles is needed

- a simple derivation of the classical plasma frequency:
- electrons (mass m, charge e, uniform density ρ)
- fixed charge-compensating homogeneous background
- the restoring force proportional to the displacement
 harmonic vibrations



< ロ > < 同 > < 回 > < 回 >