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0 Mean-field approximation (MFA)

◮ a simple approach to many-particle interacting systems

◮ a reduction to an effective one-particle problem

◮ both for classical and quantum systems

◮ reliability in solid-state physics: depending on dimension
(1D - not valid, 3D - semiquantitative validity,
2D - depends on details of the model/system)

◮ recently extended to a dynamical mean-field theory

in this lecture:

¶ justification of the MFA from a variational principle
(Peierls/Feynman/Bogolyubov inequality)

¶ MFA for the classical Ising model of magnetism



1 Peierls-Feynman inequality

• for two Hamiltonians H and H0 that differ by a quantity
V ≡ H − H0 and for the corresponding free energies F and F0

(at a given temperature T ), the following inequality holds:

F ≤ F0 + 〈V 〉0 = F0 + 〈H − H0〉0 , (1)

where 〈. . . 〉0 denotes the thermodynamic average with respect
to the unperturbed Hamiltonian H0

• practical importance of the inequality:
H is usually the Hamiltonian of a real system, i.e., it is difficult
for an exact treatment, while H0 is the Hamiltonian of a
simpler model system that can be treated exactly including an
evaluation of the r.h.s. of Eq. (1).



H0 depends on unknown parameters ai (i = 1, 2, . . . ), so that
the r.h.s. of Eq. (1) becomes a function of these parameters,

F0 + 〈H − H0〉0 ≡ Φ({ai}) .

The values of {ai} can be found by minimization of the
function Φ({ai}), which yields an approximate value of the
free energy F as a function of the temperature (and of other
parameters of the Hamiltonian H, e.g., external fields):

Fappr = min
{ai}

Φ({ai}) .

This approximate free energy leads then to other physical
quantities (entropy, energy, specific heat, magnetization, . . . ).



• Proof of the inequality (for the classical case):

exp(−βF ) =

∫

exp(−βH)dΓ ,

exp(−βF0) =

∫

exp(−βH0)dΓ ,

〈A〉0 =

∫
A exp(−βH0)dΓ
∫
exp(−βH0)dΓ

,

where β = 1/(kBT ), dΓ ≡ dp dq, and A = A(p, q) denotes an
arbitrary quantity. For A = exp(−βV ) it yields:

exp(−βF ) =

∫

exp(−βH0) exp(−βV )dΓ

= exp(−βF0)〈exp(−βV )〉0 .

The real function V 7→ exp(−βV ) is convex,



which means that for any average 〈. . . 〉 with positive weights,
a general relation 〈exp(−βV )〉 ≥ exp (−β〈V 〉) is valid.
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f (x) – convex:

f ′′(x) ≥ 0

〈f (x)〉 ≥ f (〈x〉)

For the thermodynamic average 〈. . . 〉0, one gets

〈exp(−βV )〉0 ≥ exp(−β〈V 〉0)

=⇒ exp(−βF ) ≥ exp(−βF0) exp(−β〈V 〉0) ,

which is equivalent to Eq. (1).
For the quantum case: R. P. Feynman: Statistical Mechanics,
or S. V. Tyablikov: Methods of Quantum Theory of Magnetism.



2 Ising model of magnetism
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magnetism: ⇑, ⇓ (local spins)

binary alloys: A, B (atomic species)

a simple classical model to study:

◮ phase transitions

◮ appearance of complex orders



• the Ising Hamiltonian is defined as

H = −
1

2

∑

mn

Jmnsmsn −
∑

m

bmsm , (2)

where m, n – lattice sites, sm ∈ {+1,−1} – the direction
of a classical local moment (spin) at the m-th site, the
exchange integrals Jmn – pair interaction of the local spins
(Jmm = 0, Jmn = Jnm), and bm – local magnetic fields
interacting with the individual local spins

• the model Hamiltonian is taken in a form

H0 = −
∑

m

amsm , (3)

where am denote (yet unspecified) local magnetic fields.
This Hamiltonian does not contain interaction among the
spins and it is easy to deal with.



• the quantities entering the r.h.s. of Eq. (1) are equal to

Z0 =
∑

{sm}

exp(−βH0) =
∑

{sm}

exp

(

β
∑

m

amsm

)

=
∏

m zm , zm =

+1∑

sm=−1

exp(βamsm) = 2 cosh(βam) ,

F0 = − β−1 lnZ0 = − β−1
∑

m

ln[2 cosh(βam)] ,

〈H0〉0 = −
∑

m

am〈sm〉0 ,

〈sm〉0 = z−1
m

+1∑

sm=−1

sm exp(βamsm) = tanh(βam) ,

〈H〉0 = −
1

2

∑

mn

Jmn〈sm〉0〈sn〉0 −
∑

m

bm〈sm〉0 ,



where the relation 〈smsn〉0 = 〈sm〉0〈sn〉0 was used that is
valid for the non-interacting Hamiltonian H0.

The function to be minimized [≡ r.h.s. of Eq. (1)] thus reads:

Φ({ai}) = −
1

2

∑

mn

Jmn tanh(βam) tanh(βan)

−
∑

m

bm tanh(βam) − β−1
∑

m

ln[2 cosh(βam)]

+
∑

m

am tanh(βam) . (4)

The usual conditions of stationarity (∂Φ/∂aj = 0) lead to
equations:



−
∑

n

Jjn
β

cosh2(βaj)
tanh(βan) − bj

β

cosh2(βaj)

− β−1 sinh(βaj)

cosh(βaj)
β + tanh(βaj) + aj

β

cosh2(βaj)
= 0 .

The 3rd and 4th terms on the l.h.s. cancel mutually and the
resulting equations are:

aj = bj +
∑

n

Jjn tanh(βan) , (5)

which represents a set of coupled non-linear equations for the
set of unknown variables {ai}.



• with abbreviation s̄n ≡ 〈sn〉0, the previous equations are
usually recast as

s̄j = tanh(βaj) , aj
︸︷︷︸

(∗)

= bj
︸︷︷︸

(∗∗)

+
∑

n

Jjns̄n

︸ ︷︷ ︸

(∗∗∗)

, (6)

which has a clear physical interpretation:

the average value of the spin on a given site is given by the
effective field (*) which is equal to the sum of the applied
(external) field (**) and a term depending on the average
moments on the surrounding sites, the so-called Weiss
(molecular) field (***)

¶ the equations (5, 6) define the mean-field approximation
(MFA) to the original Ising Hamiltonian

¶ MFA for alloys: Bragg-Williams approximation



• a note to the meaning of s̄n ≡ 〈sn〉0 [ = tanh(βan) ]:
the Ising Hamiltonian H, Eq. (2), leads to exact relations

∂H

∂bn
= − sn =⇒ 〈sn〉 = −

∂F

∂bn
.

Within the MFA, the exact free energy F is replaced by
FMFA = min{a} Φ({ai}), which leads to

〈sn〉MFA = −
∂FMFA

∂bn
= 〈sn〉0
︸︷︷︸

(∗)

−
∑

j

∂Φ

∂aj

∂aj
∂bn

= 〈sn〉0 = s̄n ,

where the term (*) corresponds to the explicit dependence of
Φ({ai}) on the bn and where the condition of stationarity
(∂Φ/∂aj = 0) was employed.
This means that the quantity 〈sn〉0 ≡ s̄n can really be identified
with the MFA-average of the n-th spin.



• a note to the value of 〈smsn〉 within the MFA:
in a complete analogy (by taking partial derivatives with
respect to the exchange integrals Jmn), one can prove
for m 6= n that

〈smsn〉MFA = 〈sm〉0〈sn〉0 = s̄m s̄n , (7)

which means that correlations between two different spins are
neglected within the MFA

• a note on magnitudes of the molecular fields:
for typical magnets based on 3d transition metals (Mn, Fe,
Co, Ni), the Weiss molecular fields can be ∼ 100 T, i.e., much
stronger than usual applied fields (not exceeding ∼ 10 T)



3 Ferromagnetism

• let us consider a simple (Bravais) lattice with all sites
equivalent and let us abbreviate

bm = b , am = a , 〈sm〉0 = s̄ ,
∑

n

Jmn = J ,

then the MFA equations (5, 6) reduce to

s̄ = tanh(βa) , a = b + J s̄ , s̄ = tanh[β(b + J s̄)] . (8)

For a ferromagnet, most of the pair interactions Jmn are
non-negative and we assume J > 0.

• solution to Eq. (8) =⇒ the average spin s̄ as a function
of the temperature T and the external field b: s̄ = s̄(T , b)
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s(T,b)--

kBT/J

b/J

s(T,b)

The solution s̄ = s̄(T , b) of Eq. (8) vs. a dimensionless
temperature (kBT/J ) and a dimensionless field (b/J )

[for b ≤ 0 one employs s̄(T , b) = −s̄(T ,−b)].



• J /kB ≡ TC is the Curie temperature

s̄(T , b) for fixed b:

0 TC
T

0

1

s̄

b = 0

b > 0

s̄(T , 0) – spontaneous
magnetization

s̄(T , b) for fixed T :

0 b
0

1

s̄

T > TC

T = TC

T < TC

s̄(TC , b) – critical
isotherm



3.1 Solution for high temperatures

• for small external fields, b → 0, and high temperatures T ,
Eq. (8) has a unique solution that follows from tanh(x) ≈ x

for |x | ≪ 1:

s̄ = β(b + J s̄) , s̄ =
βb

1− βJ
=

b

kBT − J
. (9)

This can be written in a form of the Curie-Weiss law

s̄(T , b) = χ(T )b , χ(T ) =
1

kBT − J
=

C

T − TC

, (10)

where χ(T ) denotes the susceptibility, C = 1/kB , and

TC = J /kB (11)

is the Curie temperature in the MFA.



• the experimentally found susceptibilities for T → T+
C follow

a relation (critical behavior):

χ(T ) ∼ (T − TC )
−γ , (12)

where γ is one of the so-called critical exponents;
the value of γ = 1, Eq. (10), is typical for the MFA while
experimental values for ferromagnetic metals (Fe, Co, Ni, Gd)
lie in the range 1.2 < γ < 1.33

0 TC
T

0

1/χ

MFA
exp.



3.2 Solution for low temperatures

• for low temperatures (T < TC , βJ > 1), a non-zero
solution s̄ exists even for vanishing external field (b = 0):

s̄ = tanh(βJ s̄) , (13)

which defines the spontaneous magnetization

3.2.1 Temperatures near the Curie temperature

• for T → T−
C , the non-trivial solution s̄ → 0 and one can use

tanh(x) ≈ x − 1
3
x3 for |x | ≪ 1 in Eq. (13), which yields:

s̄(T ) ∼ (TC − T )1/2 , (14)

whereas the critical behavior encountered in experiment and in
more sophisticated theories is



s̄(T ) ∼ (TC − T )β , (15)

where β [to be distinguished from β = 1/(kBT ) !] is another
critical exponent; its MFA value β = 1/2 exceeds measured
values around β ≈ 0.35

0 TC
T

0

s̄

MFA

exp.



• a comparison of MFA with more sophisticated approaches
(for 1st nearest-neighbor pair interactions Jmn):

◮ 1D - exact treatment simple =⇒ no phase transition

◮ 2D - exact treatment possible (L. Onsager)

◮ 3D - Monte Carlo simulations

system TC/T
MFA
C β

1D chain – –
2D square lattice 0.567 0.125
3D sc lattice 0.752 0.326
3D fcc lattice 0.816 0.326

¶ MFA overestimates both TC and β (βMFA = 0.5)



3.2.2 Temperatures close to zero

• for T → 0+, the non-trivial solution s̄ → 1, and one can
employ tanh(x) ≈ 1− 2 exp(−2x) for x ≫ 1 in Eq. (13),
which yields:

s̄(T ) = 1− 2 exp

(

−
2J

kBT

)

, (16)

i.e., the finite temperature T > 0 causes a very slow initial
decrease from the saturated value s̄ = 1 at T = 0

• interpretation of Eq. (16):
local spin reversals (sm = +1 → sm = −1)
accompanied by an energy increase 2J
[with the Boltzmann probability exp(−β 2J )]



• experiment (for cubic ferromagnets Fe and Ni) yields

a faster decrease: s̄(T ) = 1− AT 3/2 – the Bloch 3/2-law

• origin of the Bloch law: Heisenberg model (instead of Ising),
collective excitations (magnons), quantum statistics

0 TC
T

0

1

s̄

MFA
exp.



3.2.3 Susceptibility

• the (differential) susceptibility in presence of spontaneous
non-zero magnetization is defined as

χ(T ) =
∂s̄(T , b = 0)

∂b

and the partial derivative of s̄ = tanh[β(b + J s̄)] leads to

χ =
β(1 + J χ)

cosh2(βJ s̄)
, χ =

β

cosh2(βJ s̄)− βJ
,

χ(T ) ≈
4

kBT
exp

(

−
2J

kBT

)

for T → 0+ ,

χ(T ) ≈
1

2kB(TC − T )
for T → T−

C (17)



0 TC
T

0

χ



3.3 Critical isotherm

• for T = TC and for small external fields, b → 0+,
the value of s̄ is obtained by solving s̄ = tanh[β(b + J s̄)]

with the use of tanh(x) ≈ x − 1
3
x3 for |x | ≪ 1;

with βC = (kBTC )
−1 = J −1 we get:

0 = βCb −
1

3
(βCb + s̄)3 , s̄(b) ≈

(
3b

J

)1/3

. (18)

This is another example of the critical behavior, namely

s̄(b) ∼ b1/δ , (19)

where the critical exponent δ = 3 in the MFA
while its measured values lie around δ ≈ 4.



• the critical behavior in the MFA, Eqs. (10, 14, 17, 18),
differs quantitatively from experimental behavior;
however, both the measured and the MFA critical exponents
(β = 1/2, γ = 1, δ = 3) satisfy a rule

δ = 1 +
γ

β
, (20)

that follows from a ‘scaling law’ Ansatz



3.4 Energy, entropy, and specific heat

• the function to be minimized, Eq. (4), per one site of the
ferromagnet is

Φ1(a) = −
J

2
tanh2(βa) − b tanh(βa)

− kBT ln[2 cosh(βa)] + a tanh(βa) (21)

• by employing the relation s̄ = tanh(βa), one can prove

a =
1

2β
ln

1 + s̄

1− s̄
, cosh(βa) =

(
1− s̄2

)−1/2
,

which can be substituted into Φ1(a), Eq. (21).
This leads to the MFA-free energy per one site as a function of
temperature and external field:



F1(T , b) = −
J

2
s̄2 − bs̄

+ kBT

(
1 + s̄

2
ln

1 + s̄

2
+

1− s̄

2
ln
1− s̄

2

)

, (22)

where s̄ depends implicitly on T and b due to the
condition of stationarity: s̄ = tanh[β(b + J s̄)].

• the internal energy per one site can be obtained from the
average of the Hamiltonian H, Eq. (2), with the neglect of
correlations in the MFA, Eq. (7) [ 〈smsn〉 ≈ s̄ms̄n ]:

U1(T , b) = −
J

2
s̄2 − bs̄ (23)



• the entropy per one site is now given by (F1 = U1 − TS1):

S1(T , b) = − kB

(
1 + s̄

2
ln

1 + s̄

2
+

1− s̄

2
ln
1− s̄

2

)

, (24)

which has a clear interpretation in terms of two probabilities
p± = (1± s̄)/2 corresponding to the average spin s̄

• the specific heat per one site (at a constant field b) equals

C1(T , b) =
∂U1(T , b)

∂T
= −

J

2

∂s̄2

∂T
− b

∂s̄

∂T
(25)

• at zero field (b = 0) and for temperatures above the TC :
s̄ = 0 =⇒ S1(T , 0) = kB ln 2, U1(T , 0) = 0, C1(T , 0) = 0;



for temperatures slightly below the TC :
s̄2 ∼ (TC − T ) =⇒ F1(T , 0), U1(T , 0), S1(T , 0) are
continuous at T = TC , whereas the specific heat C1(T , 0)
exhibits a discontinuity:

lim
T→T−

C

C1(T , 0) =
3

2
kB ,

lim
T→T+

C

C1(T , 0) = 0 , (26)

=⇒ the phase transition
is of the second order

• experiment: ’lambda’ point 0
0

TC
T

C

MFA exp.



3.5 MFA and the Landau theory of phase transitions

• the Landau theory of the 2nd-order phase transitions is
based on a phenomenological free energy as a function of the
order parameter s̄ in the form of a 4th-degree polynomial:

ΨL(s̄) = φ(T ) − bs̄ + c2(T − TC)s̄
2 + c4s̄

4 , (27)

where: φ(T ) – free energy of the paramagnetic phase,
c2, c4 – positive constants, T – temperature,
b – external field, TC – the Curie temperature

◮ term −bs̄ ≡ magnetic field × magnetic moment

◮ terms ()s̄2 + ()s̄4 – reflect the symmetry s̄ ↔ −s̄

• the equilibrium value of s̄ = s̄(T , b): from minimization
of ΨL(s̄) with respect to s̄ (performed at fixed T and b)

• validity only near the critical point (T → TC , b → 0)



• the MFA provides a similar function (defined for |s̄| ≤ 1):
a in Φ1(a), Eq. (21), is replaced by s̄ = tanh(βa), Eq. (8),
which yields [see also Eq. (22)]:

ΨMFA(s̄) = −
J

2
s̄2 − bs̄

+ kBT

(
1 + s̄

2
ln
1 + s̄

2
+

1− s̄

2
ln
1− s̄

2

)

(28)

• the functions ΨL(s̄) and ΨMFA(s̄) are very similar (for
|s̄| ≪ 1); a comparison of their Taylor expansions (around
s̄ = 0) yields 2c2 = kB and 12c4 = kBTC = J =⇒

◮ quantitative agreement between the MFA
and the Landau theory in the critical region

◮ identical critical exponents (β, γ, δ) in both approaches



The functions ΨL(s̄) and ΨMFA(s̄)
in absence of external magnetic field (b = 0)

-1  0  1

Ψ
L

s--

Landau

T/TC = 0.8

T/TC = 1

T/TC = 1.2

-1  0  1

Ψ
M

F
A

s--

MFA

T/TC = 0.8

T/TC = 1

T/TC = 1.2



• the equilibrium value of s̄ follows from Eq. (27),

∂ΨL(s̄)

∂s̄
= 0 =⇒ b = 2c2(T − TC )s̄ + 4c4s̄

3 , (29)

which can be recast as

b

s̄
= 2c2(T − TC ) + 4c4s̄

2

and depicted by means
of the Arrott plot
(isotherms – straight lines)

0
0

b/s̄

s̄2
T < TC T = TC

T > TC



3.6 Critical behavior

• the condition for s̄ in the Landau theory, Eq. (29), can also
be rewritten with definition of t ≡ |T − TC | as

(
bt−3/2

)
= ±2c2

(
s̄ t−1/2

)
+ 4c4

(
s̄t−1/2

)3
, (30)

where the + (−) sign refers to T > TC (T < TC);

=⇒ s̄t−1/2 (’rescaled magnetization’) depends only on
bt−3/2 (’rescaled field’) and on the sign of T − TC

• in experiment (and more sophisticated theories) and near the
critical point, one finds similarly (β, δ – critical exponents)

s̄t−β = f±
(
bt−βδ

)
, (31)

so that the full dependence s̄ = s̄(T , b) reduces
to two functions f± of a single variable



(k = 1)

(k = 0)

(k = 1/δ)

f+

f−

ln
(
bt−βδ

)

ln
(
s̄t−β

)

(k values – slopes of the asymptotic straight lines)



4 Complex magnetic orders

• simple structures can exhibit complex magnetic orders (at
low temperatures) featured by a reciprocal-space vector k0
=⇒ a real-space structure with period Λ = 2π/|k0| often
incommensurate with the underlying lattice parameters

• examples on bcc lattice:

◮ Fe: ferromagnet,
trivial k0 = (0, 0, 0)

◮ Cr: spin density wave,
k0 = (2π/a)(0.952, 0, 0)

◮ Eu: spin spiral,
k0 = (2π/a)(0.27, 0, 0)

bc bc

bc bc

bc bc

bc bc

b

a



• tendency to formation of non-ferromagnetic orders can be
understood from the MFA conditions, Eq. (5),

s̄m = tanh

[

β

(

bm +
∑

n

Jmns̄n

)]

,

applied to a simple (Bravais) lattice but without an
assumption of equivalence of the quantities bm and s̄m for
different lattice sites

• in the limit of high temperatures T and small applied fields
bm, these conditions reduce to a set of linear equations

s̄m = βbm + β
∑

n

Jmns̄n , (32)

where the spins s̄m at all lattices sites are mutually coupled



• since Jmn = J(m−n)0 due to the translational invariance of
the Bravais lattice, Eq. (32) is of a convolution type =⇒
it can be solved using the lattice Fourier transformation:

s̃(k) =
∑

m

exp(ik · Tm) s̄m ,

b̃(k) =
∑

m

exp(ik · Tm) bm ,

J̃(k) =
∑

m

exp(ik · Tm) Jm0 , (33)

where k – a vector from the 1st Brillouin zone (BZ),
Tm – the m-th translational vector

(the vector of lattice site m)



• (a technical note)

◮ the standard Fourier transformation in 1D and its inverse
are defined by

f̃ (k) =

∫ +∞

−∞

exp(ikx) f (x) dx ,

f (x) =
1

2π

∫ +∞

−∞

exp(−ikx) f̃ (k) dk

◮ the convolution h = f ∗ g of two functions is defined by

h(x) =

∫ +∞

−∞

f (x − y ) g(y ) dy

and it holds: h̃(k) = f̃ (k) g̃(k)



• the original set of coupled relations, Eq. (32), is transformed
into separate relations involving only a single k vector:

s̃(k) = βb̃(k) + βJ̃(k)s̃(k) =⇒

s̃(k;T ) = χ̃(k;T )b̃(k) , χ̃(k;T ) =
1

kBT − J̃(k)
(34)

• the divergence of the solution s̃(k;T ), Eq. (34), leads to a
critical temperature Tcr given in the MFA as

kBTcr = max
k∈BZ

J̃(k) ≡ J̃(k0) , (35)

where k0 – the vector of the (complex) magnetic structure:

◮ ferromagnetism for k0 = 0 [ J̃(0) =
∑

m Jm0 = J ]

◮ k0 6= 0 requires some pair interactions negative (Jmn < 0)



• example: 1-dimensional lattice with lattice parameter a,
its 1st BZ is −π/a ≤ k ≤ π/a

0
0 kπ/a

J̃(k)

r

r k0 = 0
ferromagnet

u

u k0 = π/a
antiferromagnet
. . . ↑ ↓ ↑ ↓ ↑ . . .

b

b 0 < k0 < π/a
complex order
Λ = 2π/k0



5 Non-local susceptibility and spin-spin correlation
functions

• in the paramagnetic state (T > Tcr ), the linear relation
between the small applied fields bm and the resulting small
values of s̄m can be written quite generally as

s̄m(T ) =
∑

n

χmn(T ) bn , (36)

where the non-local susceptibilities χmn(T ) are defined as

χmn(T ) =
∂s̄m(T ; {bj})

∂bn

∣
∣
∣
∣
0

, (37)

where the partial derivative is taken at all fields null, bj = 0.
The meaning of χmn(T ) is obvious: it reflects the effect of a
local field at site n on the average value of the spin at site m.



• for Bravais lattices, the susceptibilites χmn(T ) are
translationally invariant; their lattice Fourier transformation

χ̃(k;T ) =
∑

m

exp(ik · Tm)χm0(T )

is given in the MFA according to Eq. (34) by

χ̃(k;T ) =
[

kBT − J̃(k)
]−1

. (38)

The values of χmn(T ) can be obtained from the inverse
lattice Fourier transformation

χm0(T ) =
1

ΩBZ

∫

BZ

exp(−ik · Tm) χ̃(k;T ) d3k , (39)

where the integration is taken over the 1st BZ, the volume of
which is ΩBZ .



• the spin-spin correlation functions are defined as averages
〈smsn〉 taken at temperature T (T > Tcr) and at all fields
null, bj = 0 ( =⇒ s̄m = 0 for all sites)

• in the MFA, the spin-spin correlation functions for different
sites (m 6= n) reduce to zero, see Eq. (7)

• however, a general exact relation of the classical Boltzmann
statistics (between the susceptibility and the correlation of
fluctuations) allows one to express

〈smsn〉(T ) = kBT χmn(T ) , (40)

which thus yields non-trivial correlation functions even in the
MFA



• for a ferromagnet, the maximum value of χ̃(k;T )

{ = [kBT − J̃(k)]−1 } occurs at k = 0 since

J̃(k) = J − Dk2
for k ≡ |k| → 0 , (41)

where J = J̃(0) = kBTC and where the D (D > 0) is a
spin-wave stiffness constant (for simplicity, we assume cubic
lattices only). Consequently, the χ̃(k;T ) reduces to

χ̃(k;T ) =
D−1

ξ−2(T ) + k2
for k → 0 , (42)

where the so-called correlation length ξ(T ) is defined by

ξ(T ) =

√

D

kB(T − TC)
. (43)



• by extending the validity of Eq. (42)

{ χ̃(k;T ) ∼ [ξ−2(T ) + k2]−1 } to all values of k

and by integrating over the whole reciprocal space in the
inverse lattice Fourier transformation, Eq. (39),
we get the MFA spin-spin correlation functions as

〈smsn〉(T ) ∼
1

dmn

exp

[

−
dmn

ξ(T )

]

, (44)

where the dmn = |Tm −Tn| denotes the intersite distance.
The relations described by Eq. (42) and Eq. (44) are called the
Ornstein-Zernike behavior.

• the meaning of Eq. (44) is obvious: the spin-spin
correlations are negligible for very distant sites [dmn > ξ(T )],
but they are appreciable for nearby sites [dmn < ξ(T )]



• the divergence of the correlation length for T → T+
C given

by Eq. (43) represents a special case of the critical behavior

ξ(T ) ∼ (T − TC )
−ν (45)

with the MFA critical exponent ν = 1/2, whereas more
accurate theories yield values ν ≈ 0.7 (confirmed by
experiments as well)

• this divergence is a characteristic feature of the phase
transition; it corresponds to presence of big clusters [domains
of size ≈ ξ(T )] of spins pointing in the same direction



6 Properties of the MFA

• the MFA is qualitatively or semi-quantitatively correct in a
number of cases; nevertheless, it exhibits several shortcomings:

◮ it yields a phase transition in any dimension

◮ for temperatures near the critical point: incorrect critical
exponents

◮ for high temperatures: complete neglect of the magnetic
short-range order (〈smsn〉MFA = 0)

◮ for low temperatures: a too slow reduction of magnetization
with increasing temperature, Eq. (16), whereas experiment
gives the Bloch law: sz(0)− sz(T ) ∼ T 3/2



◮ the last shortcoming cannot be removed (within the MFA):

¶ the classical Heisenberg model yields:

sz = L(βa) , a = b + J sz ,

where L(x) = coth(x)− x−1 – the Langevin function;
=⇒ a very fast reduction: sz(0)− sz(T ) ∼ T

¶ the quantum Heisenberg model yields:

sz = BS(βa) , a = b + J sz ,

where BS(x) – the Brillouin function for the quantum
atomic spin S (integer or half-integer);
=⇒ a similar slow reduction as in Eq. (16)


