Mean-field approximation for Ising model

I. Turek

Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic

turek@ipm.cz

January 5, 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

0 Mean-field approximation (MFA)

- a simple approach to many-particle interacting systems
- a reduction to an effective one-particle problem
- both for classical and quantum systems
- reliability in solid-state physics: depending on dimension (1D - not valid, 3D - semiquantitative validity, 2D - depends on details of the model/system)
- recently extended to a dynamical mean-field theory

in this lecture:

- ¶ justification of the MFA from a variational principle (Peierls/Feynman/Bogolyubov inequality)
- \P MFA for the classical Ising model of magnetism

1 Peierls-Feynman inequality

• for two Hamiltonians H and H_0 that differ by a quantity $V \equiv H - H_0$ and for the corresponding free energies F and F_0 (at a given temperature T), the following inequality holds:

$$F \leq F_0 + \langle V \rangle_0 = F_0 + \langle H - H_0 \rangle_0, \qquad (1)$$

where $\langle \dots \rangle_0$ denotes the thermodynamic average with respect to the unperturbed Hamiltonian H_0

• practical importance of the inequality:

H is usually the Hamiltonian of a real system, i.e., it is difficult for an exact treatment, while H_0 is the Hamiltonian of a simpler model system that can be treated exactly including an evaluation of the r.h.s. of Eq. (1). H_0 depends on unknown parameters a_i (i = 1, 2, ...), so that the r.h.s. of Eq. (1) becomes a function of these parameters,

$$F_0 + \langle H - H_0
angle_0 \equiv \Phi(\{a_i\}).$$

The values of $\{a_i\}$ can be found by minimization of the function $\Phi(\{a_i\})$, which yields an approximate value of the free energy *F* as a function of the temperature (and of other parameters of the Hamiltonian *H*, e.g., external fields):

$$F_{\text{appr}} = \min_{\{a_i\}} \Phi(\{a_i\}).$$

This approximate free energy leads then to other physical quantities (entropy, energy, specific heat, magnetization, ...).

• Proof of the inequality (for the classical case):

$$\exp(-\beta F) = \int \exp(-\beta H) d\Gamma,$$

$$\exp(-\beta F_0) = \int \exp(-\beta H_0) d\Gamma,$$

$$\langle A \rangle_0 = \frac{\int A \exp(-\beta H_0) d\Gamma}{\int \exp(-\beta H_0) d\Gamma},$$

where $\beta = 1/(k_B T)$, $d\Gamma \equiv dp dq$, and A = A(p,q) denotes an arbitrary quantity. For $A = \exp(-\beta V)$ it yields:

$$\exp(-\beta F) = \int \exp(-\beta H_0) \exp(-\beta V) d\Gamma$$

=
$$\exp(-\beta F_0) \langle \exp(-\beta V) \rangle_0.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The real function $V \mapsto \exp(-\beta V)$ is convex,

which means that for any average $\langle \dots \rangle$ with positive weights, a general relation $\langle \exp(-\beta V) \rangle \ge \exp(-\beta \langle V \rangle)$ is valid.

For the thermodynamic average $\langle \dots \rangle_0$, one gets

$$\begin{array}{rcl} \langle \exp(-\beta V) \rangle_0 & \geq & \exp(-\beta \langle V \rangle_0) \\ \implies & \exp(-\beta F) & \geq & \exp(-\beta F_0) \exp(-\beta \langle V \rangle_0) \,, \end{array}$$

which is equivalent to Eq. (1). For the quantum case: R. P. Feynman: Statistical Mechanics, or S. V. Tyablikov: Methods of Quantum Theory of Magnetism.

2 Ising model of magnetism

magnetism: \uparrow , \Downarrow (local spins) binary alloys: A, B (atomic species)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

a simple classical model to study:

- phase transitions
- appearance of complex orders

• the Ising Hamiltonian is defined as

$$H = -\frac{1}{2} \sum_{mn} J_{mn} s_m s_n - \sum_m b_m s_m, \qquad (2)$$

where m, n - lattice sites, $s_m \in \{+1, -1\}$ - the direction of a classical local moment (spin) at the *m*-th site, the exchange integrals J_{mn} - pair interaction of the local spins $(J_{mm} = 0, J_{mn} = J_{nm})$, and b_m - local magnetic fields interacting with the individual local spins

• the model Hamiltonian is taken in a form

$$H_0 = -\sum_m a_m s_m, \qquad (3)$$

where a_m denote (yet unspecified) local magnetic fields. This Hamiltonian does not contain interaction among the spins and it is easy to deal with. \bullet the quantities entering the r.h.s. of Eq. (1) are equal to

$$Z_{0} = \sum_{\{s_{m}\}} \exp(-\beta H_{0}) = \sum_{\{s_{m}\}} \exp\left(\beta \sum_{m} a_{m} s_{m}\right)$$
$$= \prod_{m} z_{m}, \qquad z_{m} = \sum_{s_{m}=-1}^{+1} \exp(\beta a_{m} s_{m}) = 2 \cosh(\beta a_{m}),$$
$$F_{0} = -\beta^{-1} \ln Z_{0} = -\beta^{-1} \sum_{m} \ln[2 \cosh(\beta a_{m})],$$
$$\langle H_{0} \rangle_{0} = -\sum_{m} a_{m} \langle s_{m} \rangle_{0},$$
$$\langle s_{m} \rangle_{0} = z_{m}^{-1} \sum_{s_{m}=-1}^{+1} s_{m} \exp(\beta a_{m} s_{m}) = \tanh(\beta a_{m}),$$
$$\langle H \rangle_{0} = -\frac{1}{2} \sum_{mn} J_{mn} \langle s_{m} \rangle_{0} \langle s_{n} \rangle_{0} - \sum_{m} b_{m} \langle s_{m} \rangle_{0},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where the relation $\langle s_m s_n \rangle_0 = \langle s_m \rangle_0 \langle s_n \rangle_0$ was used that is valid for the non-interacting Hamiltonian H_0 .

The function to be minimized [\equiv r.h.s. of Eq. (1)] thus reads:

$$\Phi(\{a_i\}) = -\frac{1}{2} \sum_{mn} J_{mn} \tanh(\beta a_m) \tanh(\beta a_n)$$

$$- \sum_m b_m \tanh(\beta a_m) - \beta^{-1} \sum_m \ln[2 \cosh(\beta a_m)]$$

$$+ \sum_m a_m \tanh(\beta a_m). \qquad (4)$$

The usual conditions of stationarity $(\partial \Phi / \partial a_j = 0)$ lead to equations:

$$-\sum_{n} J_{jn} \frac{\beta}{\cosh^{2}(\beta a_{j})} \tanh(\beta a_{n}) - b_{j} \frac{\beta}{\cosh^{2}(\beta a_{j})}$$
$$-\beta^{-1} \frac{\sinh(\beta a_{j})}{\cosh(\beta a_{j})}\beta + \tanh(\beta a_{j}) + a_{j} \frac{\beta}{\cosh^{2}(\beta a_{j})} = 0.$$

The 3rd and 4th terms on the l.h.s. cancel mutually and the resulting equations are:

$$a_j = b_j + \sum_n J_{jn} \tanh(\beta a_n), \qquad (5)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

which represents a set of coupled non-linear equations for the set of unknown variables $\{a_i\}$.

• with abbreviation $\bar{s}_n \equiv \langle s_n \rangle_0$, the previous equations are usually recast as

which has a clear physical interpretation:

the average value of the spin on a given site is given by the effective field (*) which is equal to the sum of the applied (external) field (**) and a term depending on the average moments on the surrounding sites, the so-called Weiss (molecular) field (***)

- \P the equations (5, 6) define the mean-field approximation (MFA) to the original Ising Hamiltonian
- ¶ MFA for alloys: Bragg-Williams approximation

• a note to the meaning of $\bar{s}_n \equiv \langle s_n \rangle_0$ [= tanh(βa_n)]: the Ising Hamiltonian *H*, Eq. (2), leads to exact relations

$$\frac{\partial H}{\partial b_n} = -s_n \qquad \Longrightarrow \qquad \langle s_n \rangle = -\frac{\partial F}{\partial b_n}$$

Within the MFA, the exact free energy F is replaced by $F_{MFA} = \min_{\{a\}} \Phi(\{a_i\})$, which leads to

$$\langle s_n \rangle_{MFA} = -\frac{\partial F_{MFA}}{\partial b_n} = \underbrace{\langle s_n \rangle_0}_{(*)} - \sum_j \frac{\partial \Phi}{\partial a_j} \frac{\partial a_j}{\partial b_n} = \langle s_n \rangle_0 = \bar{s}_n,$$

where the term (*) corresponds to the explicit dependence of $\Phi(\{a_i\})$ on the b_n and where the condition of stationarity $(\partial \Phi/\partial a_j = 0)$ was employed. This means that the quantity $\langle s_n \rangle_0 \equiv \bar{s}_n$ can really be identified with the MFA-average of the *n*-th spin. • a note to the value of $\langle s_m s_n \rangle$ within the MFA: in a complete analogy (by taking partial derivatives with respect to the exchange integrals J_{mn}), one can prove for $m \neq n$ that

$$\langle s_m s_n \rangle_{MFA} = \langle s_m \rangle_0 \langle s_n \rangle_0 = \bar{s}_m \bar{s}_n,$$
 (7)

▲□▶▲□▶▲□▶▲□▶ ■ のへで

which means that correlations between two different spins are neglected within the MFA

• a note on magnitudes of the molecular fields: for typical magnets based on 3*d* transition metals (Mn, Fe, Co, Ni), the Weiss molecular fields can be \sim 100 T, i.e., much stronger than usual applied fields (not exceeding \sim 10 T)

3 Ferromagnetism

• let us consider a simple (Bravais) lattice with all sites equivalent and let us abbreviate

$$b_m = b$$
, $a_m = a$, $\langle s_m \rangle_0 = \overline{s}$, $\sum_n J_{mn} = \mathcal{J}$,

then the MFA equations (5, 6) reduce to

$$\bar{s} = \tanh(\beta a), \quad a = b + \mathcal{J}\bar{s}, \quad \bar{s} = \tanh[\beta(b + \mathcal{J}\bar{s})].$$
 (8)

For a ferromagnet, most of the pair interactions J_{mn} are non-negative and we assume $\mathcal{J} > 0$.

• solution to Eq. (8) \implies the average spin \bar{s} as a function of the temperature T and the external field b: $\bar{s} = \bar{s}(T, b)$

The solution $\bar{s} = \bar{s}(T, b)$ of Eq. (8) vs. a dimensionless temperature $(k_B T/\mathcal{J})$ and a dimensionless field (b/\mathcal{J}) [for $b \leq 0$ one employs $\bar{s}(T, b) = -\bar{s}(T, -b)$].

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

3.1 Solution for high temperatures

• for small external fields, $b \rightarrow 0$, and high temperatures T, Eq. (8) has a unique solution that follows from $tanh(x) \approx x$ for $|x| \ll 1$:

$$\bar{s} = \beta(b + \mathcal{J}\bar{s}), \qquad \bar{s} = \frac{\beta b}{1 - \beta \mathcal{J}} = \frac{b}{k_B T - \mathcal{J}}.$$
 (9)

This can be written in a form of the Curie-Weiss law

$$\overline{s}(T,b) = \chi(T)b, \quad \chi(T) = \frac{1}{k_BT - \mathcal{J}} = \frac{C}{T - T_C},$$
 (10)

where $\chi(T)$ denotes the susceptibility, $C = 1/k_B$, and $T_C = \mathcal{J}/k_B$ (11)

is the Curie temperature in the MFA.

• the experimentally found susceptibilities for $T \rightarrow T_C^+$ follow a relation (critical behavior):

$$\chi(T) \sim (T - T_c)^{-\gamma} , \qquad (12)$$

・ロット (雪) (日) (日) (日)

where γ is one of the so-called critical exponents; the value of $\gamma = 1$, Eq. (10), is typical for the MFA while experimental values for ferromagnetic metals (Fe, Co, Ni, Gd) lie in the range $1.2 < \gamma < 1.33$

3.2 Solution for low temperatures

• for low temperatures ($T < T_C$, $\beta J > 1$), a non-zero solution \bar{s} exists even for vanishing external field (b = 0):

$$\overline{s} = \operatorname{tanh}(\beta \mathcal{J}\overline{s}),$$
 (13)

which defines the spontaneous magnetization

3.2.1 Temperatures near the Curie temperature

• for $T \to T_C^-$, the non-trivial solution $\bar{s} \to 0$ and one can use $\tanh(x) \approx x - \frac{1}{3}x^3$ for $|x| \ll 1$ in Eq. (13), which yields:

$$\bar{s}(T) \sim (T_C - T)^{1/2},$$
 (14)

whereas the critical behavior encountered in experiment and in more sophisticated theories is

$$\overline{s}(T) \sim (T_C - T)^{\beta},$$
 (15)

・ロット (雪) (日) (日) (日)

where β [to be distinguished from $\beta = 1/(k_B T)$!] is another critical exponent; its MFA value $\beta = 1/2$ exceeds measured values around $\beta \approx 0.35$

- a comparison of MFA with more sophisticated approaches (for 1st nearest-neighbor pair interactions J_{mn}):
- \blacktriangleright 1D exact treatment simple \implies no phase transition
- 2D exact treatment possible (L. Onsager)
- 3D Monte Carlo simulations

system	T_C/T_C^{MFA}	β
1D chain	_	_
2D square lattice	0.567	0.125
3D sc lattice	0.752	0.326
3D fcc lattice	0.816	0.326

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

¶ MFA overestimates both T_C and β ($\beta^{MFA} = 0.5$)

3.2.2 Temperatures close to zero

• for $T \to 0^+$, the non-trivial solution $\overline{s} \to 1$, and one can employ $tanh(x) \approx 1 - 2 \exp(-2x)$ for $x \gg 1$ in Eq. (13), which yields:

$$\bar{s}(T) = 1 - 2 \exp\left(-\frac{2\mathcal{J}}{k_B T}\right),$$
 (16)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

i.e., the finite temperature T > 0 causes a very slow initial decrease from the saturated value $\bar{s} = 1$ at T = 0

• interpretation of Eq. (16): local spin reversals $(s_m = +1 \rightarrow s_m = -1)$ accompanied by an energy increase $2\mathcal{J}$ [with the Boltzmann probability $\exp(-\beta 2\mathcal{J})$] • experiment (for cubic ferromagnets Fe and Ni) yields a faster decrease: $\bar{s}(T) = 1 - AT^{3/2}$ – the Bloch 3/2-law

• origin of the Bloch law: Heisenberg model (instead of Ising), collective excitations (magnons), quantum statistics

3.2.3 Susceptibility

• the (differential) susceptibility in presence of spontaneous non-zero magnetization is defined as

$$\chi(T) = \frac{\partial \bar{s}(T, b = 0)}{\partial b}$$

and the partial derivative of $\bar{s} = \tanh[eta(b+\mathcal{J}\bar{s})]$ leads to

$$\chi = \frac{\beta(1 + \mathcal{J}\chi)}{\cosh^2(\beta \mathcal{J}\overline{s})}, \qquad \chi = \frac{\beta}{\cosh^2(\beta \mathcal{J}\overline{s}) - \beta \mathcal{J}},$$

$$\chi(T) \approx \frac{4}{k_B T} \exp\left(-\frac{2\mathcal{J}}{k_B T}\right) \qquad \text{for } T \to 0^+,$$

$$\chi(T) \approx \frac{1}{2k_B(T_C - T)} \qquad \text{for } T \to T_C^- \qquad (17)$$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

3.3 Critical isotherm

• for $T = T_C$ and for small external fields, $b \to 0^+$, the value of \bar{s} is obtained by solving $\bar{s} = \tanh[\beta(b + \mathcal{J}\bar{s})]$ with the use of $\tanh(x) \approx x - \frac{1}{3}x^3$ for $|x| \ll 1$; with $\beta_C = (k_B T_C)^{-1} = \mathcal{J}^{-1}$ we get:

$$0 = \beta_{\mathcal{C}} b - \frac{1}{3} (\beta_{\mathcal{C}} b + \bar{s})^3, \qquad \bar{s}(b) \approx \left(\frac{3b}{\mathcal{J}}\right)^{1/3}. \quad (18)$$

This is another example of the critical behavior, namely

$$\overline{s}(b) \sim b^{1/\delta},$$
 (19)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where the critical exponent $\delta = 3$ in the MFA while its measured values lie around $\delta \approx 4$.

• the critical behavior in the MFA, Eqs. (10, 14, 17, 18), differs quantitatively from experimental behavior; however, both the measured and the MFA critical exponents ($\beta = 1/2$, $\gamma = 1$, $\delta = 3$) satisfy a rule

$$\delta = 1 + \frac{\gamma}{\beta}, \qquad (20)$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

that follows from a 'scaling law' Ansatz

3.4 Energy, entropy, and specific heat

• the function to be minimized, Eq. (4), per one site of the ferromagnet is

$$\Phi_{1}(a) = -\frac{\mathcal{J}}{2} \tanh^{2}(\beta a) - b \tanh(\beta a) \\ - k_{B}T \ln[2\cosh(\beta a)] + a \tanh(\beta a)$$
(21)

• by employing the relation $\bar{s} = \tanh(\beta a)$, one can prove

$$a = rac{1}{2eta} \ln rac{1+ar{s}}{1-ar{s}}, \qquad \cosh(eta a) = \left(1-ar{s}^2
ight)^{-1/2},$$

which can be substituted into $\Phi_1(a)$, Eq. (21). This leads to the MFA-free energy per one site as a function of temperature and external field:

$$F_{1}(T,b) = -\frac{\mathcal{J}}{2}\bar{s}^{2} - b\bar{s} + k_{B}T\left(\frac{1+\bar{s}}{2}\ln\frac{1+\bar{s}}{2} + \frac{1-\bar{s}}{2}\ln\frac{1-\bar{s}}{2}\right), \quad (22)$$

where \bar{s} depends implicitly on T and b due to the condition of stationarity: $\bar{s} = \tanh[\beta(b + J\bar{s})].$

• the internal energy per one site can be obtained from the average of the Hamiltonian H, Eq. (2), with the neglect of correlations in the MFA, Eq. (7) [$\langle s_m s_n \rangle \approx \bar{s}_m \bar{s}_n$]:

$$U_1(T,b) = -\frac{\mathcal{J}}{2}\,\overline{s}^2 - b\overline{s} \qquad (23)$$

▲□▶▲御▶★≣▶★≣▶ ≣ のQ@

• the entropy per one site is now given by $(F_1 = U_1 - TS_1)$:

$$S_1(T,b) = -k_B\left(rac{1+ar{s}}{2}\lnrac{1+ar{s}}{2}+rac{1-ar{s}}{2}\lnrac{1-ar{s}}{2}
ight),$$
 (24)

which has a clear interpretation in terms of two probabilities $p_{\pm}=(1\pm \bar{s})/2$ corresponding to the average spin \bar{s}

• the specific heat per one site (at a constant field b) equals

$$C_1(T,b) = \frac{\partial U_1(T,b)}{\partial T} = -\frac{\mathcal{J}}{2} \frac{\partial \bar{s}^2}{\partial T} - b \frac{\partial \bar{s}}{\partial T}$$
(25)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• at zero field (b = 0) and for temperatures above the T_C : $\bar{s} = 0 \implies S_1(T, 0) = k_B \ln 2$, $U_1(T, 0) = 0$, $C_1(T, 0) = 0$; for temperatures slightly below the T_C : $\bar{s}^2 \sim (T_C - T) \implies F_1(T, 0), \ U_1(T, 0), \ S_1(T, 0)$ are continuous at $T = T_C$, whereas the specific heat $C_1(T, 0)$ exhibits a discontinuity:

$$\lim_{T \to T_{c}^{-}} C_{1}(T,0) = \frac{3}{2} k_{B}, \qquad C$$

$$\lim_{T \to T_{c}^{+}} C_{1}(T,0) = 0, \quad (26)$$

- \implies the phase transition is of the second order
- experiment: 'lambda' point

・ コット (雪) (小田) (コット - 田)

3.5 MFA and the Landau theory of phase transitions

• the Landau theory of the 2nd-order phase transitions is based on a phenomenological free energy as a function of the order parameter \bar{s} in the form of a 4th-degree polynomial:

$$\Psi_L(\bar{s}) = \phi(T) - b\bar{s} + c_2(T - T_C)\bar{s}^2 + c_4\bar{s}^4, \qquad (27)$$

where: φ(T) - free energy of the paramagnetic phase, c₂, c₄ - positive constants, T - temperature, b - external field, T_C - the Curie temperature
term -bs̄ ≡ magnetic field × magnetic moment
terms ()s̄² + ()s̄⁴ - reflect the symmetry s̄ ↔ -s̄
the equilibrium value of s̄ = s̄(T, b): from minimization of Ψ_L(s̄) with respect to s̄ (performed at fixed T and b)

• validity only near the critical point $(T \rightarrow T_C, b \rightarrow 0)$

• the MFA provides a similar function (defined for $|\bar{s}| \leq 1$): *a* in $\Phi_1(a)$, Eq. (21), is replaced by $\bar{s} = \tanh(\beta a)$, Eq. (8), which yields [see also Eq. (22)]:

$$\Psi_{MFA}(\bar{s}) = -\frac{\mathcal{J}}{2}\bar{s}^2 - b\bar{s} + k_B T \left(\frac{1+\bar{s}}{2}\ln\frac{1+\bar{s}}{2} + \frac{1-\bar{s}}{2}\ln\frac{1-\bar{s}}{2}\right)$$
(28)

• the functions $\Psi_L(\bar{s})$ and $\Psi_{MFA}(\bar{s})$ are very similar (for $|\bar{s}| \ll 1$); a comparison of their Taylor expansions (around $\bar{s} = 0$) yields $2c_2 = k_B$ and $12c_4 = k_BT_C = \mathcal{J} \implies$

- quantitative agreement between the MFA and the Landau theory in the critical region
- identical critical exponents (β, γ, δ) in both approaches

The functions $\Psi_L(\bar{s})$ and $\Psi_{MFA}(\bar{s})$ in absence of external magnetic field (b = 0)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

• the equilibrium value of \bar{s} follows from Eq. (27),

$$\frac{\partial \Psi_L(\bar{s})}{\partial \bar{s}} = 0 \implies b = 2c_2(T - T_C)\bar{s} + 4c_4\bar{s}^3, \quad (29)$$

which can be recast as $\frac{b}{\overline{s}} = 2c_2(T - T_C) + 4c_4\overline{s}^2$

and depicted by means of the Arrott plot (isotherms – straight lines)

イロト イポト イヨト

э

3.6 Critical behavior

• the condition for \bar{s} in the Landau theory, Eq. (29), can also be rewritten with definition of $t \equiv |T - T_c|$ as

$$(bt^{-3/2}) = \pm 2c_2 (\bar{s}t^{-1/2}) + 4c_4 (\bar{s}t^{-1/2})^3,$$
 (30)

where the +(-) sign refers to $T > T_C$ $(T < T_C)$; $\implies \bar{s}t^{-1/2}$ ('rescaled magnetization') depends only on $bt^{-3/2}$ ('rescaled field') and on the sign of $T - T_C$

• in experiment (and more sophisticated theories) and near the critical point, one finds similarly $(\beta, \delta - \text{critical exponents})$

$$\overline{s}t^{-\beta} = f_{\pm}\left(bt^{-\beta\delta}\right), \qquad (31)$$

so that the full dependence $\bar{s} = \bar{s}(T, b)$ reduces to two functions f_{\pm} of a single variable

(k values – slopes of the asymptotic straight lines)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4 Complex magnetic orders

• simple structures can exhibit complex magnetic orders (at low temperatures) featured by a reciprocal-space vector $\mathbf{k}_0 \implies$ a real-space structure with period $\Lambda = 2\pi/|\mathbf{k}_0|$ often *incommensurate* with the underlying lattice parameters

- examples on bcc lattice:
- Fe: ferromagnet, trivial $\mathbf{k}_0 = (0, 0, 0)$
- Cr: spin density wave, $\mathbf{k}_0 = (2\pi/a)(0.952, 0, 0)$
- ► Eu: spin spiral, k₀ = (2π/a)(0.27, 0, 0)

・ロット (雪) (日) (日) (日)

• tendency to formation of non-ferromagnetic orders can be understood from the MFA conditions, Eq. (5),

$$\overline{s}_m = \tanh\left[eta\left(b_m + \sum_n J_{mn}\overline{s}_n
ight)
ight],$$

applied to a simple (Bravais) lattice but without an assumption of equivalence of the quantities b_m and \bar{s}_m for different lattice sites

• in the limit of high temperatures T and small applied fields b_m , these conditions reduce to a set of linear equations

$$\bar{s}_m = \beta b_m + \beta \sum_n J_{mn} \bar{s}_n, \qquad (32)$$

where the spins \bar{s}_m at all lattices sites are mutually coupled

• since $J_{mn} = J_{(m-n)0}$ due to the translational invariance of the Bravais lattice, Eq. (32) is of a convolution type \implies it can be solved using the lattice Fourier transformation:

$$\tilde{s}(\mathbf{k}) = \sum_{m} \exp(i\mathbf{k} \cdot \mathbf{T}_{m}) \, \bar{s}_{m} \,,$$

$$\tilde{b}(\mathbf{k}) = \sum_{m} \exp(i\mathbf{k} \cdot \mathbf{T}_{m}) \, b_{m} \,,$$

$$\tilde{J}(\mathbf{k}) = \sum_{m} \exp(i\mathbf{k} \cdot \mathbf{T}_{m}) \, J_{m0} \,,$$
(33)

where \mathbf{k} – a vector from the 1st Brillouin zone (BZ), \mathbf{T}_m – the *m*-th translational vector (the vector of lattice site *m*)

- (a technical note)
- the standard Fourier transformation in 1D and its inverse are defined by

$$\begin{aligned} \tilde{f}(k) &= \int_{-\infty}^{+\infty} \exp(\mathrm{i}kx) f(x) \,\mathrm{d}x \,, \\ f(x) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp(-\mathrm{i}kx) \,\tilde{f}(k) \,\mathrm{d}k \end{aligned}$$

• the convolution h = f * g of two functions is defined by

$$h(x) = \int_{-\infty}^{+\infty} f(x-y) g(y) \, \mathrm{d}y$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and it holds: $\tilde{h}(k) = \tilde{f}(k) \tilde{g}(k)$

• the original set of coupled relations, Eq. (32), is transformed into separate relations involving only a single **k** vector:

$$\tilde{s}(\mathbf{k}) = \beta \tilde{b}(\mathbf{k}) + \beta \tilde{J}(\mathbf{k}) \tilde{s}(\mathbf{k}) \implies$$

$$\tilde{s}(\mathbf{k}; T) = \tilde{\chi}(\mathbf{k}; T) \tilde{b}(\mathbf{k}), \quad \tilde{\chi}(\mathbf{k}; T) = \frac{1}{k_B T - \tilde{J}(\mathbf{k})} \quad (34)$$

• the divergence of the solution $\tilde{s}(\mathbf{k}; T)$, Eq. (34), leads to a critical temperature T_{cr} given in the MFA as

$$k_B T_{cr} = \max_{\mathbf{k} \in BZ} \tilde{J}(\mathbf{k}) \equiv \tilde{J}(\mathbf{k}_0), \qquad (35)$$

where \mathbf{k}_0 – the vector of the (complex) magnetic structure: For ferromagnetism for $\mathbf{k}_0 = \mathbf{0}$ [$\tilde{J}(\mathbf{0}) = \sum_m J_{m0} = \mathcal{J}$] $\mathbf{k}_0 \neq \mathbf{0}$ requires some pair interactions negative ($J_{mn} < 0$) example: 1-dimensional lattice with lattice parameter a, its 1st BZ is −π/a ≤ k ≤ π/a

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

5 Non-local susceptibility and spin-spin correlation functions

• in the paramagnetic state $(T > T_{cr})$, the linear relation between the small applied fields b_m and the resulting small values of \bar{s}_m can be written quite generally as

$$\bar{s}_m(T) = \sum_n \chi_{mn}(T) b_n, \qquad (36)$$

where the non-local susceptibilities $\chi_{mn}(T)$ are defined as

$$\chi_{mn}(T) = \left. \frac{\partial \bar{s}_m(T; \{b_j\})}{\partial b_n} \right|_0, \qquad (37)$$

where the partial derivative is taken at all fields null, $b_j = 0$. The meaning of $\chi_{mn}(T)$ is obvious: it reflects the effect of a local field at site n on the average value of the spin at site m. • for Bravais lattices, the susceptibilites $\chi_{mn}(T)$ are translationally invariant; their lattice Fourier transformation

$$\tilde{\chi}(\mathbf{k}; T) = \sum_{m} \exp(i\mathbf{k} \cdot \mathbf{T}_{m}) \chi_{m0}(T)$$

is given in the MFA according to Eq. (34) by

$$\tilde{\chi}(\mathbf{k};T) = \left[k_B T - \tilde{J}(\mathbf{k})\right]^{-1}.$$
(38)

The values of $\chi_{mn}(T)$ can be obtained from the inverse lattice Fourier transformation

$$\chi_{m0}(T) = \frac{1}{\Omega_{BZ}} \int_{BZ} \exp(-i\mathbf{k} \cdot \mathbf{T}_m) \,\tilde{\chi}(\mathbf{k}; T) \,\mathrm{d}^3 \mathbf{k} \,, \qquad (39)$$

where the integration is taken over the 1st BZ, the volume of which is Ω_{BZ} .

- the spin-spin correlation functions are defined as averages $\langle s_m s_n \rangle$ taken at temperature T ($T > T_{cr}$) and at all fields null, $b_j = 0$ ($\implies \bar{s}_m = 0$ for all sites)
- in the MFA, the spin-spin correlation functions for different sites $(m \neq n)$ reduce to zero, see Eq. (7)

• however, a general exact relation of the classical Boltzmann statistics (between the susceptibility and the correlation of fluctuations) allows one to express

$$\langle s_m s_n \rangle (T) = k_B T \chi_{mn}(T), \qquad (40)$$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

which thus yields non-trivial correlation functions even in the $\ensuremath{\mathsf{MFA}}$

• for a ferromagnet, the maximum value of
$$\tilde{\chi}(\mathbf{k}; T)$$

{ = $[k_B T - \tilde{J}(\mathbf{k})]^{-1}$ } occurs at $\mathbf{k} = \mathbf{0}$ since
 $\tilde{J}(\mathbf{k}) = \mathcal{J} - Dk^2$ for $k \equiv |\mathbf{k}| \to 0$, (41)

where $\mathcal{J} = \tilde{J}(\mathbf{0}) = k_B T_C$ and where the D (D > 0) is a spin-wave stiffness constant (for simplicity, we assume cubic lattices only). Consequently, the $\tilde{\chi}(\mathbf{k}; T)$ reduces to

$$\tilde{\chi}(\mathbf{k}; T) = \frac{D^{-1}}{\xi^{-2}(T) + k^2} \quad \text{for} \quad k \to 0,$$
(42)

where the so-called correlation length $\xi(T)$ is defined by

$$\xi(T) = \sqrt{\frac{D}{k_B(T - T_C)}}.$$
 (43)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• by extending the validity of Eq. (42) { $\tilde{\chi}(\mathbf{k}; T) \sim [\xi^{-2}(T) + k^2]^{-1}$ } to all values of \mathbf{k} and by integrating over the whole reciprocal space in the inverse lattice Fourier transformation, Eq. (39), we get the MFA spin-spin correlation functions as

$$\langle s_m s_n \rangle(T) \sim \frac{1}{d_{mn}} \exp\left[-\frac{d_{mn}}{\xi(T)}\right],$$
 (44)

where the $d_{mn} = |\mathbf{T}_m - \mathbf{T}_n|$ denotes the intersite distance. The relations described by Eq. (42) and Eq. (44) are called the Ornstein-Zernike behavior.

• the meaning of Eq. (44) is obvious: the spin-spin correlations are negligible for very distant sites $[d_{mn} > \xi(T)]$, but they are appreciable for nearby sites $[d_{mn} < \xi(T)]$

• the divergence of the correlation length for $T \rightarrow T_C^+$ given by Eq. (43) represents a special case of the critical behavior

$$\xi(T) \sim (T - T_C)^{-\nu}$$
 (45)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with the MFA critical exponent $\nu = 1/2$, whereas more accurate theories yield values $\nu \approx 0.7$ (confirmed by experiments as well)

• this divergence is a characteristic feature of the phase transition; it corresponds to presence of big clusters [domains of size $\approx \xi(T)$] of spins pointing in the same direction

6 Properties of the MFA

• the MFA is qualitatively or semi-quantitatively correct in a number of cases; nevertheless, it exhibits several shortcomings:

- it yields a phase transition in any dimension
- for temperatures near the critical point: incorrect critical exponents
- ► for high temperatures: complete neglect of the magnetic short-range order $(\langle s_m s_n \rangle_{MFA} = 0)$
- ▶ for low temperatures: a too slow reduction of magnetization with increasing temperature, Eq. (16), whereas experiment gives the Bloch law: $\overline{s^z}(0) \overline{s^z}(T) \sim T^{3/2}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\overline{s^z} = \mathcal{L}(\beta a), \qquad a = b + \mathcal{J} \, \overline{s^z},$$

where $\mathcal{L}(x) = \operatorname{coth}(x) - x^{-1}$ - the Langevin function; \implies a very fast reduction: $\overline{s^{z}}(0) - \overline{s^{z}}(T) \sim T$

¶ the quantum Heisenberg model yields:

$$\overline{s^z} = \mathcal{B}_{\mathcal{S}}(\beta a), \qquad a = b + \mathcal{J} \, \overline{s^z},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\mathcal{B}_{S}(x)$ – the Brillouin function for the quantum atomic spin *S* (integer or half-integer); \implies a similar slow reduction as in Eq. (16)