|
|
|
||
Projective extension of affine space, projective space, homogeneous coordinates. Colineations. Quadrics, their properties and classification.
Last update: G_M (09.10.2001)
|
|
||
This course helps to obtain theoretical background for teaching mathematics at high school.
Last update: T_KDM (19.05.2008)
|
|
||
M. Sekanina a kol., Geometrie I, II, Státní pedagogické nakladatelství Praha 1986, 1988. J. Janyška, A. Sekaninová; Analytická teorie kuželoseček a kvadrik, Masarykova univerzita v Brně, 2001 M. Lávička:Geometrie 2; pomocný učební text - ZČU Plzeň, 2004, http://home.zcu.cz/~lavicka/subjects/G2/texty/G2_text.pdf
Last update: T_KDM (13.05.2008)
|
|
||
Lectures and exercises. Last update: T_KDM (20.05.2008)
|
|
||
1. Basic properties of projective space. Definition of a projective space over R and C, linear objects, duality, corelation.
2. Classifications of quadrics in a projective space. Definition of a quadric in projective space, inertia theorem, nullity space of a quadric, classification of quadrics especially for n = 2, 3.
3. Desargues, Pappos and Pascal theorem. Last update: T_KDM (13.05.2008)
|