SubjectsSubjects(version: 970)
Course, academic year 2014/2015
   Login via CAS
Linear algebra I - NMUM103
Title: Lineární algebra I
Guaranteed by: Department of Mathematics Education (32-KDM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2014 to 2015
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Jindřich Bečvář, CSc.
RNDr. Martina Škorpilová, Ph.D.
Teacher(s): doc. RNDr. Jindřich Bečvář, CSc.
Mgr. Zdeněk Halas, DiS., Ph.D.
RNDr. Martina Škorpilová, Ph.D.
Class: M Bc. MZV
M Bc. MZV > Povinné
M Bc. MZV > 1. ročník
Classification: Mathematics > Mathematics, Algebra, Differential Equations, Potential Theory, Didactics of Mathematics, Discrete Mathematics, Math. Econ. and Econometrics, External Subjects, Financial and Insurance Math., Functional Analysis, Geometry, General Subjects, , Real and Complex Analysis, Mathematics General, Mathematical Modeling in Physics, Numerical Analysis, Optimization, Probability and Statistics, Topology and Category
Incompatibility : NUMP003
Interchangeability : NUMP003
Is incompatible with: NMUM802
Is interchangeable with: NMUM802, NUMP003
Annotation -
Basic linear algebra course for prospective teachers.
Last update: T_KDM (23.04.2012)
Literature -
  • S. Lang: Linear Algebra, Addison-Wesley Publishing Company-Reading, 1966.
  • I. Satake: Linear Algebra, Marcel Dekker, Inc., New York, 1975.
  • S. Axler: Linear Algebra Done Right, Springer, New York, 1996.

Last update: Bečvář Jindřich, doc. RNDr., CSc. (02.10.2018)
Syllabus -
  • Introduction to basic algebraic structures. Fields, rings, integral domains, groups, permutations; examples.
  • Vector spaces. Linear combinations, generating sets, linear independence, basis, coordinates with respect to a basis, dimension, theorem on the dimension of the join and meet; examples.
  • Homomorphisms of vector spaces. Basic properties of homomorphisms, special types of homomorphisms, the theorem on the dimension of the kernel and the image; examples.
  • Homomorphisms and matrices. The matrix of a homomorphism, compositions of homomorphisms and product of matrices, transformation of coordinates of a vector, rank of a matrix, elementary transformations, methods for calculating the rank of matrix, transformations of matrices, inverse matrix; examples.

Last update: Bečvář Jindřich, doc. RNDr., CSc. (02.10.2018)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html