SubjectsSubjects(version: 970)
Course, academic year 2014/2015
   Login via CAS
Combinatorial and Computational Geometry I - NDMI009
Title: Kombinatorická a výpočetní geometrie I
Guaranteed by: Department of Applied Mathematics (32-KAM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2014 to 2014
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: prof. RNDr. Jiří Matoušek, DrSc.
doc. RNDr. Pavel Valtr, Dr.
prof. RNDr. Martin Tancer, Ph.D.
Teacher(s): doc. RNDr. Martin Balko, Ph.D.
prof. RNDr. Jiří Matoušek, DrSc.
RNDr. Zuzana Patáková, Ph.D.
prof. RNDr. Martin Tancer, Ph.D.
doc. RNDr. Pavel Valtr, Dr.
Class: Informatika Bc.
Kombinatorická geometrie a geom. algorit
M Mgr. MSTR
M Mgr. MSTR > Povinně volitelné
Classification: Informatics > Discrete Mathematics
Is incompatible with: NGEM020
Is interchangeable with: NGEM020
Annotation -
Discrete geometry investigates combinatorial properties of geometric objects such as finite point sets or convex sets in Euclidean spaces. Computational geometry considers the design of efficient algorithms for computing with geometric configurations, and discrete geometry serves as its mathematical foundation. Part I of the course is a concise introduction. The contents of Part II varies among the years, each year covering a few selected topics in more depth.
Last update: T_MUUK (31.01.2001)
Aim of the course -

Serves as a mathematical foundation for areas using geometric computations (e.g., computer graphics, geometric optimization) and develops geometric intuition and imagination.

Last update: T_KAM (20.04.2008)
Literature -

J. Pach, P. Agarwal: Combinatorial Geometry, Cambridge University Press 1995

M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf: Computational geometry: Algorithms and Applications, Springer-Verlag 1997

Last update: Tancer Martin, prof. RNDr., Ph.D. (06.10.2015)
Syllabus -

Basic theorems on convex sets (Hellyho, Radon, Caratheodory, separation).

Minkowski's theorem on lattice points in convex bodies.

Line-point incidences.

Geometric duality. Convex polytopes: definition, basic properties,

maximum number of faces.

Voronoi diagrams.

Hyperplane arrangements.

Introduction to algorithms of computational geometry. Randomized incremental

algorithms.

Last update: Kynčl Jan, doc. Mgr., Ph.D. (13.06.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html