|
|
|
||
The lecture is devoted to the introduction to complex analysis.
Last update: T_KMA (15.05.2001)
|
|
||
J. Veselý: Komplexní analýza pro učitele. Karolinum, Praha 2000
B. Novák: Funkce komplexní proměnné (pro učitelské studium MFF), SPN, Praha
I. Černý: Základy analysy v komplexním oboru, Academia, Praha
W. Rudin: Reálná a komplexní analýza, Academia, Praha Last update: Zakouřil Pavel, RNDr., Ph.D. (05.08.2002)
|
|
||
1. Complex field C, complex functions of real variable. Complex functions of complex variable, derivative, Cauchy-Riemann equations. Riemann sphere.
2. Holomorphic functions. Elementary functions (linear fractional transformations, exp, sin, cos, tg, cotg, sinh, cosh, tgh, cotgh). Argument and logarithm of complex numbers. Paths in C, integral over paths in C and its (in)dependence on a path. Cauchy's theorem.
3. Cauchy's formula and its corollaries (Liouville's theorem, fundamental theorem of algebra, existence and uniqueness of power series representation of holomorphic functions).
4. Laurent series, Cauchy's formula in an annulus, existence and uniqueness Laurent series representation. Isolated singularities of holomorphic functions. Residue theorem, computation of integrals using residue theorem.
5. Meromorphic functions. Last update: T_KMA (22.05.2003)
|