|
|
|
||
An introductory course in functional analysis for bachelor's program in General Mathematics, specialization
Stochastics.
Last update: G_M (16.05.2012)
|
|
||
An introductory course in functional analysis. Last update: G_M (27.04.2012)
|
|
||
W. Rudin: Analýza v reálném a komplexním oboru, Academia, Praha, 2003
J. Lukeš: Úvod do funkcionální analýzy, skripta MFF
J. Lukeš: Zápisky z funkcionální analýzy, skripta MFF Last update: Bárta Tomáš, doc. RNDr., Ph.D. (23.05.2019)
|
|
||
lecture and exercises Last update: G_M (27.04.2012)
|
|
||
1. Linear spaces algebraic version of Hahn-Banach theorem
2. Hilbert spaces orthogonal projection; orthogonalization; abstract Fourier series; representation of Hilbert space
3. Normed linear spaces; Banach spaces bounded linear operators and functionals; Hahn-Banach theorem; dual space; reflexivity; Banach-Steinhaus theorem; open map theorem and closed graph theorem; inverse operator; spectrum of the operator; compact operator; examples of Banach spaces and their duals (integrable functions, continuous functions; Stone-Weierstrass theorem)
4. Locally convex spaces Hahn-Banach theorem and separation of convex sets; weak convergence; weak topology; extremal point and the Krein-Milman theorem; examples of locally convex spaces (continuous functions, differentiable functions) Last update: Netuka Ivan, prof. RNDr., DrSc. (05.09.2013)
|