SubjectsSubjects(version: 970)
Course, academic year 2012/2013
   Login via CAS
Selected Topics on Functional Analysis - NMMA342
Title: Vybrané partie z funkcionální analýzy
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2012 to 2014
Semester: summer
E-Credits: 5
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: prof. RNDr. Ivan Netuka, DrSc.
Teacher(s): doc. RNDr. Roman Lávička, Ph.D.
prof. RNDr. Ivan Netuka, DrSc.
Mgr. Dalibor Šmíd, Ph.D.
Class: M Bc. OM
M Bc. OM > Povinně volitelné
M Bc. OM > Zaměření STOCH
Classification: Mathematics > Functional Analysis
Pre-requisite : {One 2nd year Analysis course}
Incompatibility : NMMA331, NRFA075
Interchangeability : NMMA331, NRFA075
Is incompatible with: NMMA942
Is interchangeable with: NRFA075, NMMA942
In complex pre-requisite: NMSA349
Annotation -
An introductory course in functional analysis for bachelor's program in General Mathematics, specialization Stochastics.
Last update: G_M (16.05.2012)
Aim of the course -

An introductory course in functional analysis.

Last update: G_M (27.04.2012)
Literature - Czech

W. Rudin: Analýza v reálném a komplexním oboru, Academia, Praha, 2003

J. Lukeš: Úvod do funkcionální analýzy, skripta MFF

J. Lukeš: Zápisky z funkcionální analýzy, skripta MFF

Last update: Bárta Tomáš, doc. RNDr., Ph.D. (23.05.2019)
Teaching methods -

lecture and exercises

Last update: G_M (27.04.2012)
Syllabus -

1. Linear spaces

algebraic version of Hahn-Banach theorem

2. Hilbert spaces

orthogonal projection; orthogonalization; abstract Fourier series; representation of Hilbert space

3. Normed linear spaces; Banach spaces

bounded linear operators and functionals; Hahn-Banach theorem; dual space; reflexivity; Banach-Steinhaus theorem; open map theorem and closed graph theorem; inverse operator; spectrum of the operator; compact operator; examples of Banach spaces and their duals (integrable functions, continuous functions; Stone-Weierstrass theorem)

4. Locally convex spaces

Hahn-Banach theorem and separation of convex sets; weak convergence; weak topology; extremal point and the Krein-Milman theorem; examples of locally convex spaces (continuous functions, differentiable functions)

Last update: Netuka Ivan, prof. RNDr., DrSc. (05.09.2013)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html