|
|
|
||
Forms of n-th degree, algebraic surfaces and their properties - multiple points, polars, tangent planes. Algebraic curves in the plane, theorem of Bezout, Pluckers formulas.
Last update: T_KDM (22.05.2001)
|
|
||
This course helps to obtain theoretical background for teaching mathematics at high school. Last update: T_KDM (19.05.2008)
|
|
||
Kočandrle M. Algebraické variety. SPN Praha, 1989.
Švec A. Příklady z algebraické geometrie. SPN Praha, 1970.
Walker R. J. Algebraic Curves. Springer-Verlag, New York, 1950.
Reid M. Undergraduate Algebraic Geometry. Cambridge University Press, 1989. Last update: T_KDM (13.05.2008)
|
|
||
Lectures. Last update: T_KDM (19.05.2008)
|
|
||
Algebraic hypersurfaces, reducibility and irreducibility, degree of a hypersurface, regular and singular points, polar of order n, tangent hyperplane and tangent line of a hypersurface.
Planar algebraic curves, determination of an algebraic curve, resultant, theorem of Bezout, bounds for number of singular points of a reducible and irreducible algebraic curve, genus of a curve, parametrization of curves of genus 0, Hessian of a curve, Plucker's formulas. Last update: T_KDM (28.05.2003)
|